[1]LIN Sunqi,XU Jiameng,ZHENG Yujie,et al.An asymmetric bimodal fusion method for lightweight palm print and palm vein recognition network[J].CAAI Transactions on Intelligent Systems,2024,19(5):1190-1198.[doi:10.11992/tis.202212031]
Copy

An asymmetric bimodal fusion method for lightweight palm print and palm vein recognition network

References:
[1] 李倩颖, 阮秋琦. 分辨率LBP的掌纹特征提取[J]. 智能系统学报, 2010, 5(6): 482-486.
LI Qianying, RUAN Qiuqi. Palmprint feature extraction based on multiresolution LBP[J]. CAAI transactions on intelligent systems, 2010, 5(6): 482-486.
[2] 孙波. 基于深度学习的掌静脉识别算法研究与识别系统[D]. 桂林: 桂林电子科技大学, 2022.
SUN Bo. Research on palmar vein recognition algorithm and recognition system based on deep learning[D]. Guilin: Guilin University of Electronic Technology, 2022.
[3] ZHONG Dexing, YANG Yuan, DU Xuefeng. Palmprint recognition using Siamese network[C]//Chinese Conference on Biometric Recognition. Cham: Springer, 2018: 48-55.
[4] ZHAO Shuping, ZHANG B, PHILIP CHEN C L. Joint deep convolutional feature representation for hyperspectral palmprint recognition[J]. Information sciences, 2019, 489: 167-181.
[5] AHMED M A, ROUSHDY M, SALEM A B M. Multi- modal technique for human authentication using fusion of palm and dorsal hand veins[C]//New Approaches for Multidimensional Signal Processing. Singapore: Springer, 2022: 63-78.
[6] LOU Jiashu, ZOU Jie, WANG Baohua. Palm vein reco- gnition via multi-task loss function and attention layer[EB/OL]. (2022-11-11)[2022-12-31]. http://arxiv.org/abs/2211.05970.
[7] WANG Weiyao, TRAN D, FEISZLI M. What makes training multi-modal classification networks hard? [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 12692-12702.
[8] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[9] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[10] LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective kernel networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 510-519.
[11] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient- based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[12] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[13] DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2018-10-11)[2022-12-31]. https://arxiv.org/abs/1810.04805.
[14] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advances in neural information processing systems, 2020, 33: 1877-1901.
[15] HAN Song, MAO Huizi, DALLY W J. Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding[EB/OL]. (2015-10-01) [2022-12-31]. http://arxiv.org/abs/1510.00149.
[16] HE Yihui, ZHANG Xiangyu, SUN Jian. Channel pruning for accelerating very deep neural networks[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 1398-1406.
[17] CHENG Jian, WU Jiaxiang, LENG Cong, et al. Quantized CNN: a unified approach to accelerate and compress convolutional networks[J]. IEEE transactions on neural networks and learning systems, 2018, 29(10): 4730-4743.
[18] MERONE M, GRAZIOSI A, LAPADULA V, et al. A practical approach to the analysis and optimization of neural networks on embedded systems[J]. Sensors, 2022, 22(20): 7807-7822.
[19] 邵仁荣, 刘宇昂, 张伟, 等. 深度学习中知识蒸馏研究综述[J]. 计算机学报, 2022, 45(8): 1638-1673.
SHAO Renrong, LIU Yuang, ZHANG Wei, et al. A survey of knowledge distillation in deep learning[J]. Chinese journal of computers, 2022, 45(8): 1638-1673.
[20] 黄震华, 杨顺志, 林威, 等. 知识蒸馏研究综述[J]. 计算机学报, 2022, 45(3): 624-653.
HUANG Zhenhua, YANG Shunzhi, LIN Wei, et al. Knowledge distillation: a survey[J]. Chinese journal of computers, 2022, 45(3): 624-653.
[21] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-03-09) [2022-12-31]. http://arxiv.org/abs/1503.02531.
[22] ROMERO A, BALLAS N, KAHOU S E, et al. FitNets: hints for thin deep nets[EB/OL]. (2014-12-19)[2022-12-31]. http://arxiv.org/abs/1412.6550.
[23] SUN Zhenan, TAN Tieniu, WANG Yunhong, et al. Ordinal palmprint represention for personal identification [represention read representation][C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 279-284.
[24] ZHANG Lin, CHENG Zaixi, SHEN Ying, et al. Palmprint and palmvein recognition based on DCNN and a new large-scale contactless palmvein dataset[J]. Symmetry, 2018, 10(4): 78-39.
[25] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International journal of computer vision, 2020, 128(2): 336-359.
[26] 吴晓昱. 电子废弃物拆机塑料的近红外光谱识别[D]. 上海: 上海交通大学, 2020.
WU Xiaoyu. Identification of electronic waste dismantling plastics by near infrared spectroscopy[D]. Shanghai: Shanghai Jiao Tong University, 2020.
[27] ZHAO Shuping, ZHANG B. Joint constrained least-square regression with deep convolutional feature for palmprint recognition[J]. IEEE transactions on systems, man, and cybernetics: systems, 2022, 52(1): 511-522.
[28] HASSAN N F, ABDULRAZZAQ H I. Pose invariant palm vein identification system using convolutional neural network[J]. Baghdad science journal, 2018, 15(4): 503-510.
Similar References:

Memo

-

Last Update: 2024-09-05

Copyright © CAAI Transactions on Intelligent Systems