[1]HAO Yong,JIA Denghui,LI Chenyang,et al.Event trigger-based prescribed-time tracking control of spacecraft[J].CAAI Transactions on Intelligent Systems,2024,19(3):661-669.[doi:10.11992/tis.202207017]
Copy

Event trigger-based prescribed-time tracking control of spacecraft

References:
[1] 耿远卓, 李传江, 郭延宁, 等. 单推力航天器交会对接轨迹规划及跟踪控制[J]. 航空学报, 2020, 41(9): 186–200
GENG Yuanzhuo, LI Chuanjiang, GUO Yanning, et al. Rendezvous and docking of spacecraft with single thruster: path planning and tracking control[J]. Acta aeronautica et astronautica sinica, 2020, 41(9): 186–200
[2] 黄宇嵩, 田栋, 李洪珏, 等. 一种翻滚非合作航天器抵近绕飞避障轨迹规划和跟踪控制方法[J]. 空间控制技术与应用, 2021, 47(3): 1–8
HUANG Yusong, TIAN Dong, LI Hongjue, et al. A trajectory planning and tracking algorithm for the tumbling non-cooperative spacecraft approach, flying-around and obstacle avoidance[J]. Aerospace control and application, 2021, 47(3): 1–8
[3] ZHANG Kai, LIU Yang, TAN Jiubin. Semiglobal finite-time stabilization of saturated spacecraft rendezvous system by dynamic event-triggered and self-triggered control[J]. IEEE transactions on aerospace and electronic systems, 2022, 58(6): 5030–5042.
[4] QU Qingyu, LIU Kexin, WANG Wei, et al. Spacecraft proximity maneuvering and rendezvous with collision avoidance based on reinforcement learning[J]. IEEE transactions on aerospace and electronic systems, 2022, 58(6): 5823–5834.
[5] 易中贵, 戈新生. 间接Legendre伪谱法的欠驱动航天器姿态运动轨迹跟踪[J]. 宇航学报, 2018, 39(6): 648–655
YI Zhonggui, GE Xinsheng. Attitude motion trajectory tracking for underactuated spacecraft based on indirect Legendre pesudospectral method[J]. Journal of astronautics, 2018, 39(6): 648–655
[6] YUAN Shuo, YU Chengpu, SUN Jian. Adaptive event-triggered consensus control of linear multi-agent systems with cyber attacks[J]. Neurocomputing, 2021, 442: 1–9.
[7] WANG Xin, YANG Huilan, ZHONG Shouming. Improved results on consensus of nonlinear MASs with nonhomogeneous Markov switching topologies and DoS cyber attacks[J]. Journal of the Franklin Institute, 2021, 358(14): 7237–7253.
[8] WU Baolin, CAO Xibin. Robust attitude tracking control for spacecraft with quantized torques[J]. IEEE transactions on aerospace and electronic systems, 2018, 54(2): 1020–1028.
[9] HOU Linlin, SUN Haibin. Anti-disturbance attitude control of flexible spacecraft with quantized states[J]. Aerospace science and technology, 2020, 99: 105760.
[10] 张凯, 周彬. 离散输入受限系统的增益调度事件触发和自触发控制[J]. 控制与决策, 2022, 37(6): 1489–1496
ZHANG Kai, ZHOU Bin. Gain scheduled event-triggered and self-triggered control of discrete-time input constrained systems[J]. Control and decision, 2022, 37(6): 1489–1496
[11] 王帅磊, 周绍磊, 代飞扬, 等. 多航天器分布式事件触发分组姿态协同控制[J]. 北京航空航天大学学报, 2021, 47(2): 323–332
WANG Shuailei, ZHOU Shaolei, DAI Feiyang, et al. Distributed event-triggered group attitude coordinated control of multi-spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 323–332
[12] 王志文, 陈万杰, 孙洪涛. 双端动态事件触发下信息物理系统输出反馈H控制[J]. 兰州理工大学学报, 2022, 48(3): 77–85
WANG Zhiwen, CHEN Wanjie, SUN Hongtao. Output feedback H control of cyber-physical systems triggered by two terminal dynamic events[J]. Journal of Lanzhou University of Technology, 2022, 48(3): 77–85
[13] 田嘉旭. 基于细胞卫星的航天器姿态接管控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
TIAN Jiaxu. Spacecraft Attittude Takeover Control Via Cellular Satellites[D]. Harbin: Harbin Institute of Technology, 2019.
[14] XU Chuang, WU Baolin, CAO Xibin, et al. Distributed adaptive event-triggered control for attitude synchronization of multiple spacecraft[J]. Nonlinear dynamics, 2019, 95(4): 2625–2638.
[15] SHI Yongxia, HU Qinglei, SHAO Xiaodong, et al. Adaptive neural coordinated control for multiple euler-lagrange systems with periodic event-triggered sampling[J]. IEEE transactions on neural networks and learning systems, 2023, 34(11): 8791–8801.
[16] LEE K W, SINGH S N. Noncertainty-equivalence spacecraft adaptive formation control with filtered signals[J]. Journal of aerospace engineering, 2017, 30(5): 04017029.
[17] 马鸣宇, 董朝阳, 马思迁, 等. 多航天器反步滑模SO(3)协同控制[J]. 宇航学报, 2018, 39(6): 664–673
MA Mingyu, DONG Chaoyang, MA Siqian, et al. Coordinated attitude control of multiple spacecraft via backstepping sliding mode method on SO(3)[J]. Journal of astronautics, 2018, 39(6): 664–673
[18] ZHANG Chengxi, WANG Jihe, ZHANG Dexin, et al. Fault-tolerant adaptive finite-time attitude synchronization and tracking control for multi-spacecraft formation[J]. Aerospace science and technology, 2018, 73: 197–209.
[19] HUANG Bing, LI Aijun, GUO Yong, et al. Rotation matrix based finite-time attitude synchronization control for spacecraft with external disturbances[J]. ISA transactions, 2019, 85: 141–150.
[20] GAO Shihong, LIU Xiaoping, JING Yuanwei, et al. A novel finite-time prescribed performance control scheme for spacecraft attitude tracking[J]. Aerospace science and technology, 2021, 118: 107044.
[21] SHI Xiaoning, ZHOU Zhigang, ZHOU Di. Finite-time attitude trajectory tracking control of rigid spacecraft[J]. IEEE transactions on aerospace and electronic systems, 2017, 53(6): 2913–2923.
[22] XU Chuang, WU Baolin, ZHANG Yingchun. Distributed prescribed-time attitude cooperative control for multiple spacecraft[J]. Aerospace science and technology, 2021, 113: 106699.
[23] WANG Tianqi, HUANG Jie. Leader-following event-triggered adaptive practical consensus of multiple rigid spacecraft systems over jointly connected networks[J]. IEEE transactions on neural networks and learning systems, 2021, 32(12): 5623–5632.
[24] YE Hefu, SONG Yongduan. Backstepping design embedded with time-varying command filters[J]. IEEE transactions on circuits and systems II:express briefs, 2022, 69(6): 2832–2836.
[25] HU Qinglei, SHAO Xiaodong, CHEN Wenhua. Robust fault-tolerant tracking control for spacecraft proximity operations using time-varying sliding mode[J]. IEEE transactions on aerospace and electronic systems, 2018, 54(1): 2–17.
[26] HU Qinglei, SHI Yongxia. Event-based coordinated control of spacecraft formation flying under limited communication[J]. Nonlinear dynamics, 2020, 99(3): 2139–2159.
[27] HU Qinglei, SHI Yongxia, WANG Chenliang. Event-based formation coordinated control for multiple spacecraft under communication constraints[J]. IEEE transactions on systems, man, and cybernetics:systems, 2021, 51(5): 3168–3179.
[28] CAO Ye, CAO Jianfu, SONG Yongduan. Practical prescribed time control of euler–lagrange systems with partial/full state constraints: a settling time regulator-based approach[J]. IEEE transactions on cybernetics, 2022, 52(12): 13096–13105.
[29] GUO Yong, SONG Shenmin. Finite-time control for formation flying spacecraft with coupled attitude and translational dynamics[C]//2013 10th IEEE International Conference on Control and Automation. Hangzhou: IEEE, 2013: 89–94.
[30] ZHANG Jianqiao, YE Dong, BIGGS J D, et al. Finite-time relative orbit-attitude tracking control for multi-spacecraft with collision avoidance and changing network topologies[J]. Advances in space research, 2019, 63(3): 1161-1175.
[31] LU Yu, SU Rong, ZHANG Chengxi, et al. Event-triggered adaptive formation keeping and interception scheme for autonomous surface vehicles under malicious attacks[J]. IEEE transactions on industrial informatics, 2022, 18(6): 3947–3957.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems