[1]GUAN Fengxu,LU Siqi,ZHENG Yan.Dual discriminator residual generation adversarial network with multiscale feature fusion[J].CAAI Transactions on Intelligent Systems,2023,18(5):917-925.[doi:10.11992/tis.202207005]
Copy

Dual discriminator residual generation adversarial network with multiscale feature fusion

References:
[1] KINGMA D P, WELLING M. Auto-encoding variational Bayes[C]//2nd International Conference on Learning Representations. Banff: ICLR, 2014: 1-14.
[2] REZENDE D J, MOHAMED S, WIERSTRA D. Stochastic backpropagation and approximate inference in deep generative models[C]//2014 International Conference on Machine Learning. SAN DIEGO: JMLR, 2014: 1278?1286.
[3] HINTON G E, SEJNOWSKI T J, ACKLEY D H. Boltzmann machines: constraint satisfaction networks that learn[J]. Cognitive science, 1994, 9: 1-40.
[4] ACKLEY D H, HINTON G E, SEJNOWSKI T J. A learning algorithm for boltzmann machines[J]. Cognitive science, 1985, 9(1): 147-169.
[5] GOODFELLOW I, POUGET-ABADIE J, MIRZA M. Generative adversarial nets[C]//Proceedings of the 2014 Conference on Advances in Neural Information Processing Systems 27. Montreal: Curran Associates, 2014. 2672?2680.
[6] RUAN Congcong, YUAN Liuchun, HU Haifeng, et al. Image translation with dual-directional generative adversarial networks[J]. IET computer vision, 2021, 15(1): 73-83.
[7] CHEN Xiaocong, LI Yun, YAO Lina, et al. Generative adversarial U-net for domain-free medical image augmentation[EB/OL]. (2021?01?12)[2022?07?06]. https://arxiv.org/abs/2101.04793.
[8] KONG Jiahui, SHEN Haibin, HUANG Kejie. DualPathGAN: facial reenacted emotion synthesis[J]. IET computer vision, 2021, 15(7): 501-513.
[9] 张冀, 曹艺, 王亚茹, 等. 融合VAE和StackGAN的零样本图像分类方法[J]. 智能系统学报, 2022, 17(3): 593-601
ZHANG Ji, CAO Yi, WANG Yaru, et al. Zero-shot image classification method combining VAE and StackGAN[J]. CAAI transactions on intelligent systems, 2022, 17(3): 593-601
[10] 王凯旋, 任福继, 倪红军, 等. 基于循环互相关系数的CGAN温度值图像扩增[J]. 智能系统学报, 2022, 17(1): 32-40
WANG Kaixuan, REN Fuji, NI Hongjun, et al. Image amplification for temperature value image based on cyclic cross-correlation coefficient CGAN[J]. CAAI transactions on intelligent systems, 2022, 17(1): 32-40
[11] 姜义, 吕荣镇, 刘明珠, 等. 基于生成对抗网络的人脸口罩图像合成[J]. 智能系统学报, 2021, 16(6): 1073-1080
JIANG Yi, LYU Rongzhen, LIU Mingzhu, et al. Masked face image synthesis based on a generative adversarial network[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1073-1080
[12] 尹诗, 侯国莲, 胡晓东, 等. 基于AC-GAN数据重构的风电机组主轴承温度监测方法[J]. 智能系统学报, 2021, 16(6): 1106-1116
YIN Shi, HOU Guolian, HU Xiaodong, et al. Temperature monitoring method of the main bearing of wind turbine based on AC-GAN data reconstruction[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1106-1116
[13] MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for generative adversarial networks[EB/OL]. (2018?02?16)[2022?07?06]. https://arxiv.org/abs/1802.05957.
[14] CASANOVA A, CAREIL M, VERBEEK J, et al. Instance-conditioned GAN[C]//35th Conference on Neural Information Processing Systems. North torrey: NIPS, 2021.
[15] CHAVDAROVA T, FLEURET F. SGAN: an alternative training of generative adversarial networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 9407-9415.
[16] KANG M, SHIM W J, CHO M, et al. Rebooting ACGAN: auxiliary classifier GANs with stable training[C]// Neural Information Processing Systems. Virtual: NeurlPS, 2021: 1-13.
[17] 史彩娟, 涂冬景, 刘靖祎. Re-GAN: 残差生成式对抗网络算法[J]. 中国图象图形学报, 2021, 26(3): 594-604
SHI Caijuan, TU Dongjing, LIU Jingyi. Re-GAN: residual generative adversarial network algorithm[J]. Journal of image and graphics, 2021, 26(3): 594-604
[18] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. (2016?01?07)[2022?07?06]. https://arxiv.org/abs/1511.06434.
[19] KARRAS T, AILA, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[EB/OL]. (2018?02?26)[2022?07?06]. https://arxiv.org/abs/1710.10196.
[20] MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. (2014?11?06)[2022?07?06]. https://arxiv.org/abs/1411.1784.
[21] ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier GANs[C]// 34th International Conference on Machine Learning. San Diego: JMLR, 2017.
[22] ZHOU Peng, XIE Lingxi, NI Bingbing, et al. Omni-GAN: on the secrets of cGANs and beyond[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2022: 14041-14051.
[23] NGUYEN T D, LE Trung, VU Hung, et al. Dual discriminator generative adversarial nets[J]. Advances in neural information processing systems, 2017, 30(12): 2671-2681.
[24] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein Gan[EB/OL]. (2017?12?06)[2022?07?06]. https://arxiv.org/abs/1701.07875.
[25] Gulrajani I, Ahmed F, Arjovsky M, et al. Improved training of wasserstein GANs[J]. Advances in neural information processing systems, 2017, 30(12): 5768-5778.
[26] BHASKARA V S, AUMENTADO-ARMSTRONG T, JEPSON A, et al. GraN-GAN: piecewise gradient normalization for generative adversarial networks[C]//2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2022: 2432-2441.
[27] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[28] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261-2269.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems