[1]QI Xiaogang,WANG Yazhou,BAN Liming,et al.Multi-objective evolutionary algorithm for optimal scheduling of dynamic maintenance resources[J].CAAI Transactions on Intelligent Systems,2023,18(2):305-313.[doi:10.11992/tis.202201001]
Copy

Multi-objective evolutionary algorithm for optimal scheduling of dynamic maintenance resources

References:
[1] 宋建社, 曹小平, 曹耀钦, 等. 装备维修信息化工程[M]. 北京: 国防工业出版社, 2005: 1?8.
[2] 曹小平, 路广安. 装备维修器材保障[M]. 北京: 国防大学出版社, 2008: 10-15.
[3] 王涛. 基于混合进化算法的军用车辆维修保障资源调度优化研究[D]. 北京: 北京理工大学, 2013.
WANG Tao. Research on maintenance resource scheduling optimization for military vehicles based on hybrid evolutionary algorithm[D]. Beijing: Beijing Institute of Technology, 2013.
[4] 张柳, 聂成龙, 张伟. 装备作战单元维修保障建模与仿真[M]. 北京: 国防工业出版社, 2015.
[5] JAIN N N, R S K, AKRAM S. Improvising process scheduling using machine learning[C]//2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology. Bangalore: IEEE, 2018: 1379?1382.
[6] 孙笑, 宋卫星, 班利明, 等. 复杂人力资源约束下的抢占式维修工序调度[J]. 控制与决策, 2022, 37(2): 393–400
SUN Xiao, SONG Weixing, BAN Liming, et al. Preemptive maintenance process scheduling under complex human resource constraints[J]. Control and decision, 2022, 37(2): 393–400
[7] WANG Yadong, SHI Quan, HU Qiwei. Dynamic multi-objective optimization for multi-period emergency logistics network[J]. Journal of intelligent & fuzzy systems, 2019, 37(6): 8471–8481.
[8] WANG Feiyue, PEI Zhongwei, DONG Longjun, et al. Emergency resource allocation for multi-period post-disaster using multi-objective cellular genetic algorithm[J]. IEEE access, 2020, 8: 82255–82265.
[9] 张鑫, 赵金超, 张勇明. 基于蚁群算法的舰船维修资源优化调度[J]. 兵工自动化, 2011, 30(11): 31–35
ZHANG Xin, ZHAO Jinchao, ZHANG Yongming. Optimized dispatching of warship maintenance resources based on ant colony algorithm[J]. Ordnance industry automation, 2011, 30(11): 31–35
[10] 陈盖凯, 李海瑞. 基于应急模式的飞机维修资源优化调度方法[J]. 空军预警学院学报, 2016, 30(1): 9–12,16
CHEN Gaikai, LI Hairui. Optimal scheduling method of aircraft maintenance resources in emergency mode[J]. Journal of air force early warning academy, 2016, 30(1): 9–12,16
[11] ZHENG Junxi, CAO Junhai, AN Binlai. Optimization modeling and decision making of equipment maintenance resource scheduling based on NSGA-2 algorithm[C]//Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence-ICIAI 2019. New York: ACM Press, 2019: 253?257.
[12] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182–197.
[13] 张敏, 罗文坚, 王煦法. 一种基于正态分布交叉的ε-MOEA[J]. 软件学报, 2009, 20(2): 305?314.
ZHANG Min, LUO Wenjian, WANG Xufa. A normal distribution crossover for ε-MOEA[J]. Journal of software, 2009, 20(2): 305?314.
[14] 白芸, 高玉渊. 差分进化算法在旅行商问题中的应用[J]. 科学技术创新, 2022(23): 23–26
BAI Yun, GAO Yuyuan. Application of differential evolution algorithm in traveling salesman problem[J]. Scientific and technological innovation, 2022(23): 23–26
[15] ZHANG Qingfu, LI Hui. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE transactions on evolutionary computation, 2007, 11(6): 712–731.
[16] KANG Qi, SONG Xinyao, ZHOU Mengchu, et al. A collaborative resource allocation strategy for decomposition-based multiobjective evolutionary algorithms[J]. IEEE transactions on systems, man, and cybernetics:systems, 2019, 49(12): 2416–2423.
[17] WANG Jiahai, WENG Taiyao, ZHANG Qingfu. A two-stage multiobjective evolutionary algorithm for multiobjective multidepot vehicle routing problem with time windows[J]. IEEE transactions on cybernetics, 2019, 49(7): 2467–2478.
[18] QI Yutao, MA Xiaoliang, LIU Fang, et al. MOEA/D with adaptive weight adjustment[J]. Evolutionary computation, 2014, 22(2): 231–264.
[19] 耿焕同, 许可, 戴中斌, 等. 基于双重贡献分配的多目标混合算子进化算法[J]. 控制与决策, 2022, 37(5): 1195–1202
GENG Huantong, XU Ke, DAI Zhongbin, et al. Multi-objective evolutionary algorithm with multiple operators based on double credit assignment[J]. Control and decision, 2022, 37(5): 1195–1202
[20] DAS S, ABRAHAM A, CHAKRABORTY U K, et al. Differential evolution using a neighborhood-based mutation operator[J]. IEEE transactions on evolutionary computation, 2009, 13(3): 526–553.
[21] 温泽宇, 谢珺, 谢刚, 等. 基于新型拥挤度距离的多目标麻雀搜索算法[J]. 计算机工程与应用, 2021, 57(22): 102–109
WEN Zeyu, XIE Jun, XIE Gang, et al. Multi-objective sparrow search algorithm based on new crowding distance[J]. Computer engineering and applications, 2021, 57(22): 102–109
[22] VAN VELDHUIZEN D A, LAMONT G B. On measuring multiobjective evolutionary algorithm performance[C]//Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512). La Jolla: IEEE, 2000: 204?211.
[23] BANDYOPADHYAY S, PAL S K, ARUNA B. Multiobjective GAs, quantitative indices, and pattern classification[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 2004, 34(5): 2088–2099.
[24] BADER J, ZITZLER E. HypE: an algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary computation, 2011, 19(1): 45–76.
[25] 李密青, 郑金华. 一种多目标进化算法解集分布广度评价方法[J]. 计算机学报, 2011, 34(4): 647–664
LI Miqing, ZHENG Jinhua. An indicator for assessing the spread of solutions in multi-objective evolutionary algorithm[J]. Chinese journal of computers, 2011, 34(4): 647–664
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems