[1]HAN Zhonghua,LI Kaijia,ZHOU Xiaofeng,et al.Research on the optimization of flexible flow shop scheduling based on deep learning[J].CAAI Transactions on Intelligent Systems,2023,18(3):468-479.[doi:10.11992/tis.202112028]
Copy

Research on the optimization of flexible flow shop scheduling based on deep learning

References:
[1] KHAMSEH A, JOLAI F, BABAEI M. Integrating sequence-dependent group scheduling problem and preventive maintenance in flexible flow shops[J]. The international journal of advanced manufacturing technology, 2015, 77(1): 173–185.
[2] GERSTL E, MOSHEIOV G, SARIG A. Batch scheduling in A two-stage flexible flow shop problem[J]. Foundations of computing and decision sciences, 2014, 39(1): 3–16.
[3] 王玉芳, 缪昇, 马铭阳, 等. 改进混合遗传算法的作业车间调度研究[J]. 现代制造工程, 2021(5): 32–38
WANG Yufang, MIAO Sheng, MA Mingyang, et al. Research on job shop scheduling based on improved hybrid genetic algorithm[J]. Modern manufacturing engineering, 2021(5): 32–38
[4] 孟磊磊, 张彪, 任亚平, 等. 求解分布式柔性作业车间调度的混合蛙跳算法[J/OL]. 机械工程学报: 1?10.[2021?07?11]. http://kns.cnki.net/kcms/detail/11.2187.th.20210608.1314.213.html.
MENG Leilei, ZHANG Biao, REN Yaping, et al. Hybrid leapfrog algorithm for distributed flexible job shop scheduling[J/OL]. Chinese journal of mechanical engineering: 1?10.[2021?07?11]. http://kns.cnki.net/kcms/detail/11.2187.th.20210608.1314.213.html.
[5] 李杨, 杨明顺, 陈曦, 等. 一种流水车间预测性维护与生产调度集成优化方法[J]. 机械科学与技术, 2022, 41(7): 1055–1061
LI Yang, YANG Mingshun, CHEN Xi, et al. Integrated optimization of predictive maintenance and production scheduling for flow-shop[J]. Mechanical science and technology for aerospace engineering, 2022, 41(7): 1055–1061
[6] 鲁华祥, 尹世远, 龚国良, 等. 基于深度确定性策略梯度的粒子群算法[J]. 电子科技大学学报, 2021, 50(2): 199–206
LU Huaxiang, YIN Shiyuan, GONG Guoliang, et al. A particle swarm optimization algorithm based on deep deterministic policy gradient[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(2): 199–206
[7] 张强, 李盼池. 进化策略自主选择的改进混洗蛙跳算法[J]. 哈尔滨工程大学学报, 2019, 40(5): 979–985
ZHANG Qiang, LI Panchi. An improved shuffled frog leaping algorithm for the autonomous selection of evolutionary strategies[J]. Journal of Harbin Engineering University, 2019, 40(5): 979–985
[8] 王林, 吕盛祥, 曾宇容. 果蝇优化算法研究综述[J]. 控制与决策, 2017, 32(7): 1153–1162
WANG Lin, LYU Shengxiang, ZENG Yurong. Literature survey of fruit fly optimization algorithm[J]. Control and decision, 2017, 32(7): 1153–1162
[9] 张水平, 王碧, 陈阳. 基于逐层演化的群体智能算法优化[J]. 工程科学学报, 2017, 39(3): 462–473
ZHANG Shuiping, WANG Bi, CHEN Yang. Optimization for swarm intelligence based on layer-by-layer evolution[J]. Journal of university of science and technology Beijing, 2017, 39(3): 462–473
[10] LUO Shu, ZHANG Linxuan, FAN Yushun. Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning[J]. Computers & industrial engineering, 2021, 159: 107489.
[11] 朱泓睿, 元国军, 姚成吉, 等. 分布式深度学习训练网络综述[J]. 计算机研究与发展, 2021, 58(1): 98–115
ZHU Hongrui, YUAN Guojun, YAO Chengji, et al. Survey on network of distributed deep learning training[J]. Journal of computer research and development, 2021, 58(1): 98–115
[12] 陈伟宏, 安吉尧, 李仁发, 等. 深度学习认知计算综述[J]. 自动化学报, 2017, 43(11): 1886–1897
CHEN Weihong, AN Jiyao, LI Renfa, et al. Review on deep-learning-based cognitive computing[J]. Acta automatica sinica, 2017, 43(11): 1886–1897
[13] 吴秀丽, 孙琳. 智能制造系统基于数据驱动的车间实时调度[J]. 控制与决策, 2020, 35(3): 523–535
WU Xiuli, SUN Lin. Data-based real-time scheduling in smart manufacturing[J]. Control and decision, 2020, 35(3): 523–535
[14] 任剑锋, 叶春明. 嵌入指针网络的深度循环神经网络模型求解作业车间调度问题[J]. 计算机应用研究, 2021, 38(1): 120–124,128
REN Jianfeng, YE Chunming. Method to solve job-shop scheduling problem using deep recurrent neural network model with embedded pointer network[J]. Application research of computers, 2021, 38(1): 120–124,128
[15] 侯智, 陈进, 陈倩, 等. 面向不确定信息的神经网络完工期预测方法研究[J]. 机械设计与研究, 2017, 33(3): 116–119,130
HOU Zhi, CHEN Jin, CHEN Qian, et al. Predictive method of product due date toward uncertain information based on neural network[J]. Machine design & research, 2017, 33(3): 116–119,130
[16] 何军红, 马国伟, 刘赛, 等. MES柔性作业车间调度优化算法的研究[J]. 工业仪表与自动化装置, 2020(1): 26–32
HE Junhong, MA Guowei, LIU Sai, et al. Research on MES flexible job shop scheduling optimization algorithm[J]. Industrial instrumentation & automation, 2020(1): 26–32
[17] 游兰, 韩雪薇, 何正伟, 等. 基于改进Seq2Seq的短时AIS轨迹序列预测模型[J]. 计算机科学, 2020, 47(9): 169–174
YOU Lan, HAN Xuewei, HE Zhengwei, et al. Improved sequence-to-sequence model for short-term vessel trajectory prediction using AIS data streams[J]. Computer science, 2020, 47(9): 169–174
[18] 郑宗生, 刘敏, 胡晨雨, 等. 基于Seq2Seq和Attention的时序卫星云图台风等级预测[J]. 遥感信息, 2020, 35(4): 16–22
ZHENG Zongsheng, LIU Min, HU Chenyu, et al. Prediction of typhoon grade with time series typhoon satellite images based on Seq2Seq and attention[J]. Remote sensing information, 2020, 35(4): 16–22
[19] 吴俊杰, 刘冠男, 王静远, 等. 数据智能: 趋势与挑战[J]. 系统工程理论与实践, 2020, 40(08): 2116–2149
WU Junjie, LIU Guannan, WANG Jingyuan, et al. Data intelligence: trends and challenges[J]. Systems engineering theory and practice, 2020, 40(08): 2116–2149
[20] 王倩雯, 张延华, 付琼霄, 等. 基于双重注意力机制的降噪自编码器推荐算法[J]. 高技术通讯, 2020, 30(12): 1234–1242
WANG Qianwen, ZHANG Yanhua, FU Qiongxiao, et al. A denoising autoencoder algorithm for recommendation based on dual attention mechanism[J]. Chinese high technology letters, 2020, 30(12): 1234–1242
[21] 张津, 魏峰远, 冯凡, 等. 基于注意力机制和编码解码网络的遥感影像分类[J]. 测绘科学技术学报, 2020, 37(6): 610–615
ZHANG Jin, WEI Fengyuan, FENG Fan, et al. Remote sensing imagery classification based on attention mechanism and encoder-decoder network[J]. Journal of geomatics science and technology, 2020, 37(6): 610–615
[22] 刘敖迪, 杜学绘, 王娜, 等. 基于深度学习的ABAC访问控制策略自动化生成技术[J]. 通信学报, 2020, 41(12): 8–20
LIU Aodi, DU Xuehui, WANG Na, et al. ABAC access control policy generation technique based on deep learning[J]. Journal on communications, 2020, 41(12): 8–20
[23] 苏佳媛. 基于深度学习技术的智能化无人机视觉系统设计研究[J]. 工业设计, 2020(12): 152–153
SU Jiayuan. Research on the design of smart uav vision system based on deep learning technology[J]. Industrial design, 2020(12): 152–153
[24] KIM J, KIM J, HUONG L T T, et al. Long short term memory recurrent neural network classifier for intrusion detection[C]//2016 International Conference on Platform Technology and Service. Jeju: IEEE, 2016: 1?5.
[25] SANTOS D L, HUNSUCKER J L, DEAL D E. Global lower bounds for flow shops with multiple processors[J]. European journal of operational research, 1995, 80(1): 112–120.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems