[1]DU Yanling,WANG Lili,HUANG Dongmei,et al.Improved R2CNN ocean eddy automatic detection with a dense feature pyramid[J].CAAI Transactions on Intelligent Systems,2023,18(2):341-351.[doi:10.11992/tis.202112019]
Copy

Improved R2CNN ocean eddy automatic detection with a dense feature pyramid

References:
[1] 张盟, 杨玉婷, 孙鑫, 等. 基于深度卷积网络的海洋涡旋检测模型[J]. 南京航空航天大学学报, 2020, 52(5): 708–713
ZHANG Meng, YANG Yuting, SUN Xin, et al. Ocean eddy detection model based on deep convolution neural network[J]. Journal of Nanjing University of aeronautics & astronautics, 2020, 52(5): 708–713
[2] 沈飙, 陈扬, 杨琛, 等. 海洋科学中尺度涡的计算机视觉检测和分析方法[J]. 数据与计算发展前沿, 2020, 2(6): 30–41
SHEN Biao, CHEN Yang, YANG Chen, et al. Computer vision detection and analysis of mesoscale eddies in marine science[J]. Frontiers of data & computing, 2020, 2(6): 30–41
[3] 董昌明, 蒋星亮, 徐广珺, 等. 海洋涡旋自动探测几何方法、涡旋数据库及其应用[J]. 海洋科学进展, 2017, 35(4): 439–453
DONG Changming, JIANG Xingliang, XU Guangjun, et al. Automated eddy detection using geometric approach, eddy datasets and their application[J]. Advances in marine science, 2017, 35(4): 439–453
[4] NENCIOLI F, DONG Changming, DICKEY T, et al. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California bight[J]. Journal of atmospheric and oceanic technology, 2010, 27(3): 564–579.
[5] CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in oceanography, 2011, 91(2): 167–216.
[6] ALPERS W, BRANDT P, LAZAR A, et al. A small-scale oceanic eddy off the coast of West Africa studied by multi-sensor satellite and surface drifter data[J]. Remote sensing of environment, 2013, 129: 132–143.
[7] FAGHMOUS J H, CHAMBER Y, BORIAH S, et al. A novel and scalable spatio-temporal technique for ocean eddy monitoring[C]//AAAI’12: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. New York: ACM, 2012: 281?287.
[8] ASHKEZARI M D, HILL C N, FOLLETT C N, et al. Oceanic eddy detection and lifetime forecast using machine learning methods[J]. Geophysical research letters, 2016, 43(23): 12234–12241.
[9] KARIMOVA S. Spiral eddies in the Baltic, Black and Caspian Seas as seen by satellite radar data[J]. Advances in space research, 2012, 50(8): 1107–1124.
[10] ISERN-FONTANET J, GARCíA-LADONA E, FONT J. Identification of marine eddies from altimetric maps[J]. Journal of atmospheric and oceanic technology, 2003, 20(5): 772–778.
[11] YI J, DU Y, HE Z, et al. Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly[J]. Ocean science, 2014, 10(1): 39–48.
[12] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770?778.
[13] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936?944.
[14] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999?3007.
[15] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[16] DUO Zijun, WANG Wenke, WANG Huizan. Oceanic mesoscale eddy detection method based on deep learning[J]. Remote sensing, 2019, 11(16): 1921.
[17] JIANG Yingying, ZHU Xiangyu, WANG Xiaobing, et al. R2CNN: rotational region CNN for orientation robust scene text detection[EB/OL]. (2017?06?30)[2020?01?01].https://arxiv.org/abs/1706.09579.
[18] YANG Xue, SUN Hao, FU K, et al. Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks[J]. Remote sens, 2018, 10: 132.
[19] SIMONYAN K , ? ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014?10?04)[2020?01?01].https://www.semanticscholar.org/paper/Very-Deep-Convolutional-Networks-for-Large-Scale-Simonyan-Zisserman/eb42cf88027de515750f230b23b1a057dc782108.
[20] 单志勇, 张鐘月. 基于改进Faster R-CNN算法的行人检测[J]. 现代计算机, 2021, 27(23): 124–128
SHAN Zhiyong, ZHANG Zhongyue. Pedestrian detection based on improved faster R-CNN algorithm[J]. Modern computer, 2021, 27(23): 124–128
[21] MA Jianqi, SHAO Weiyuan, YE Hao, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE transactions on multimedia, 2018, 20(11): 3111–3122.
[22] 戴媛, 易本顺, 肖进胜, 等. 基于改进旋转区域生成网络的遥感图像目标检测[J]. 光学学报, 2020, 40(1): 270–280
DAI Yuan, YI Benshun, XIAO Jinsheng, et al. Object detection of remote sensing image based on improved rotation region proposal network[J]. Acta optica sinica, 2020, 40(1): 270–280
[23] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580?587.
[24] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980?2988.
[25] 李广帅, 苏娟, 李义红. 基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京航空航天大学学报, 2021, 47(1): 159–168
LI Guangshuai, SU Juan, LI Yihong. An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of aeronautics and astronautics, 2021, 47(1): 159–168
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems