[1]QU Dongdong,HE Lile,HE Lin.Improved lightweight face recognition algorithm[J].CAAI Transactions on Intelligent Systems,2023,18(3):544-551.[doi:10.11992/tis.202111051]
Copy

Improved lightweight face recognition algorithm

References:
[1] 李东博, 黄铝文. 重加权稀疏主成分分析算法及其在人脸识别中的应用[J]. 计算机应用, 2020, 40(3): 717–722
LI Dongbo, HUANG Lyuwen. Reweighted sparse principal component analysis algorithm and its application in face recognition[J]. Journal of computer applications, 2020, 40(3): 717–722
[2] 徐竟泽, 吴作宏, 徐岩, 等. 融合PCA、LDA和SVM算法的人脸识别[J]. 计算机工程与应用, 2019, 55(18): 34–37
XU Jingze, WU Zuohong, XU Yan, et al. Face recognition based on PCA, LDA and SVM algorithms[J]. Computer engineering and applications, 2019, 55(18): 34–37
[3] LIU Weiyang, WEN Yandong, YU Zhiding, et al. SphereFace: Deep Hypersphere Embedding for Face Recognition[C]//Proceedings of the 2017 IEEE conference on computer vision and pattern recognition. Piscataway: IEEE, 2017: 212?220.
[4] WANG Hao, WANG Yitong, ZHOU Zheng, et al. CosFace: large margin cosine loss for deep face recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5265?5274.
[5] DENG Jiankang, GUO Jia, YANG Jing, et al. Arcface: Additive angular margin loss for deep face recogniton[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 44(10): 5962–5979.
[6] SUN Yifan, CHENG Changmao, ZHANG Yuhan, et al. Circle loss: a unified perspective of pair similarity optimization[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6397?6406.
[7] 才华, 孙俊, 朱瑞昆, 等. 基于自适应圆边际的深度人脸识别算法[J]. 兵工学报, 2021, 42(11): 2424–2432
CAI Hua, SUN Jun, ZHU Ruikun, et al. Depth face recognition algorithm based on adaptive circle margin[J]. Acta armamentarii, 2021, 42(11): 2424–2432
[8] HOWARD A G, ZHU MENGLONG, CHEN BO, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017?04?17)[2021?11?29]. https://arxiv.org/abs/1704.0486.
[9] ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[EB/OL]. (2017?07?04) [2021?11?29]. https://arxiv.org/abs/1707.01083.
[10] TAN Mingxing, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. (2019?05?28) [2021?11?29]. https://arxiv.org/abs/1905.11946.
[11] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[EB/OL]. (2018?01?13)[2021?11?29]. https://arxiv.org/abs/1801.04381.
[12] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2016: 1440?1448.
[13] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21?37.
[14] DENG Jiankang, GUO Jia, ZHOU Yuxian, et al. RetinaFace: single-stage dense face localisation in the wild[EB/OL]. (2019?03?02) [2021?11?29]. https://arxiv.org/abs/1905.00641.
[15] ZHANG Kaipeng, ZHANG Zhanpeng, LI Zhifeng, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE signal processing letters, 2016, 23(10): 1499–1503.
[16] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[EB/OL]. (2015?03?12)[2021?11?29].https://arxiv.org/abs/1503.03832.
[17] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[EB/OL]. (2015?12?10) [2021?11?29]. https://arxiv.org/abs/1512.03385.
[18] WEN Yandong, ZHANG Kaipeng, LI Zhifeng, et al. A discriminative feature learning approach for deep face recognition[C]//European Conference on Computer Vision. Cham: Springer, 2016: 499?515.
[19] WANG Feng, LIU Weiyang, LIU Haijun, et al. Additive margin softmax for face verification[EB/OL]. (2018?01?17) [2021?11?29]. https://arxiv.org/abs/1801.05599.
[20] YI Dong, LEI Zhen, LIAO Shengcai, et al. Learning face representation from scratch[EB/OL]. (2014?11?28) [2021?11?29].https://arxiv.org/abs/1411.7923.
[21] HUANG G B, LEARNED-MILLER E. Labeled faces in the wild: updates and new reporting procedures[R]. Amherst: University of Massachusetts, 2014.
[22] HUANG G B, MATTAR M, BERG T, et al. Labeled faces in the wild: a database forStudying face recognition in unconstrained environments[R]. Amherst: University of Massachusetts, 2007.
[23] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. (2014?12?22) [2021?11?29]. https://arxiv.org/abs/1412.6980.
[24] 张典, 汪海涛, 姜瑛, 等. 基于轻量级网络的实时人脸识别算法研究[J]. 计算机科学与探索, 2020, 14(2): 317–324
ZHANG Dian, WANG Haitao, JIANG Ying, et al. Research on real-time face recognition algorithm based on lightweight network[J]. Journal of frontiers of computer science and technology, 2020, 14(2): 317–324
[25] GUO Yandong, ZHANG Lei, HU Yuxiao, et al. MS-celeb-1M: a dataset and benchmark for large-scale face recognition[EB/OL]. (2016?07?27)[2021?11?29]. https://arxiv.org/abs/1607.08221.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems