[1]SU Li,SUN Yuxin,YUAN Shouzheng.A survey of instance segmentation research based on deep learning[J].CAAI Transactions on Intelligent Systems,2022,17(1):16-31.[doi:10.11992/tis.202109043]
Copy

A survey of instance segmentation research based on deep learning

References:
[1] FUKUSHIMA K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological cybernetics, 1980, 36(4): 193–202.
[2] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324.
[3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the acm, 2017, 60(6): 84–90.
[4] 董俊杰, 刘华平, 谢珺, 等. 基于反馈注意力机制和上下文融合的非模式实例分割[J]. 智能系统学报, 2021, 16(4): 801–810
DONG Junjie, LIU Huaping, XIE Jun, et al. Feedback attention mechanism and context fusion based amodal instance segmentationChinese Full Text[J]. CAAI transactions on intelligent systems, 2021, 16(4): 801–810
[5] HARIHARAN B, ARBELáEZ P, GIRSHICK R, et al. Simultaneous detection and segmentation[C]//Computer vision—ECCV 2014. Berlin, German: Springer, 2014: 297?312.
[6] 梁新宇, 林洗坤, 权冀川, 等. 基于深度学习的图像实例分割技术研究进展[J]. 电子学报, 2020, 48(12): 2476–2486
LIANG Xinyu, LIN Xikun, QUAN Jichuan, et al. Research on the progress of image instance segmentation based on deep Learning[J]. Acta electronica sinica, 2020, 48(12): 2476–2486
[7] ARBELáEZ P, PONT-TUSET J, BARRON J, et al. Multiscale combinatorial grouping[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014: 328?335.
[8] HARIHARAN B, ARBELáEZ P, GIRSHICK R, et al. Hypercolumns for object segmentation and fine-grained localization[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 447?456.
[9] DAI Jifeng, HE Kaiming, SUN Jian. Convolutional feature masking for joint object and stuff segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 3992?4000.
[10] PINHEIRO P O, COLLOBERT R, DOLLAR P. Learning to segment object candidates [M]//Advances in neural information processing systems. Morgan Kaufmann Publishers, 2015. 1990?1998.
[11] PINHEIRO P O, LIN T Y, COLLOBERT R, et al. Learning to refine object segments[M]//Computer Vision – ECCV 2016. Berlin, German: Springer, 2016: 75?91.
[12] DAI Jifeng, HE Kaiming, SUN Jian. Instance-aware semantic segmentation via multi-task network cascades[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 3150?3158.
[13] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision. New York, USA: IEEE, 2017: 2980?2988.
[14] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[15] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 770?778.
[16] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2017: 936?944.
[17] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2015: 3431?3440.
[18] CHEN Liangchieh, HERMANS A, PAPANDREOU G, et al. MaskLab: instance segmentation by refining object detection with semantic and direction features[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2018: 4013?4022.
[19] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2018: 8759?8768.
[20] LI Zeming, PENG Chao, YU Gang, et al. DetNet: design backbone for object detection[M]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 339?354.
[21] HUANG Zhaojin, HUANG Lichao, GONG Yongchao, et al. Mask scoring R-CNN[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2019: 6402?6411.
[22] KIRILLOV A, WU Yuxin, HE Kaiming, et al. PointRend: image segmentation as rendering[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2020: 9796?9805.
[23] CHENG Tianheng, WANG Xinggang, HUANG Lichao, et al. Boundary-preserving mask R-CNN[C]//Computer Vision – ECCV 2020. Berlin, German: Springer, 2020: 660?676.
[24] TANG CHUFENG, CHEN HANG, LI XIAO, et al. Look closer to segment better: boundary patch refinement for instance segmentation[EB/OL]. (2021-04-12) [2021-09-30].https://arxiv.org/abs/2104.05239.
[25] ZHANG GANG, LU XIN, TAN JINGRU, et al. RefineMask: towards high-quality instance segmentation with fine-grained features[EB/OL]. (2021-04-12) [2021-09-30].https://arxiv.org/abs/2104.08569.
[26] 姜世浩, 齐苏敏, 王来花, 等. 基于Mask R-CNN和多特征融合的实例分割[J]. 计算机技术与发展, 2020, 30(9): 65–70
JIANG Shihao, QI Sumin, WANG Laihua, et al. Instance segmentation modal based on mask R-CNN and multi-feature Fusion[J]. Computer technology and development, 2020, 30(9): 65–70
[27] BAI Min, URTASUN R. Deep watershed transform for instance segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2017: 2858?2866.
[28] NEWELL A, HUANG ZHIAO, DENG JIA. Associative embedding: end-to-end learning for joint detection and grouping[EB/OL]. (2016-11-16) [2021-09-30].https://arxiv.org/abs/1611.05424.
[29] DE BRABANDERE B, NEVEN D, VAN GOOL L. Semantic instance segmentation for autonomous driving[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. New York, USA: IEEE, 2017: 478?480.
[30] LIU Shu, JIA Jiaya, FIDLER S, et al. SGN: sequential grouping networks for instance segmentation[C]//2017 IEEE International Conference on Computer Vision. New York, USA: IEEE, 2017: 3516?3524.
[31] GAO Naiyu, SHAN Yanhu, WANG Yupei, et al. SSAP: single-shot instance segmentation with affinity pyramid[C]//2019 IEEE/CVF International Conference on Computer Vision. New York, USA: IEEE, 2019: 642?651.
[32] FATHI A, WOJNA Z, RATHOD V, et al. Semantic instance segmentation via deep metric learning[EB/OL]. (2017-03-30) [2021-09-30].https://arXiv:1703.10277.
[33] BRABANDERE B D, NEVEN D, GOOL L V. Semantic instance segmentation with a discriminative loss function[EB/OL]. (2017-08-08) [2021-09-30].https://arxiv.org/abs/1708.02551v1.
[34] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. New York, USA: IEEE, 2019: 9626?9635.
[35] DAI Jifeng, HE Kaiming, LI Yi, et al. Instance-sensitive fully convolutional networks[M]//Computer Vision – ECCV 2016. Berlin, German: Springer, 2016: 534?549.
[36] LI Yi, QI Haozhi, DAI Jifeng, et al. Fully convolutional instance-aware semantic segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2017: 4438?4446.
[37] 王子愉, 袁春, 黎健成. 利用可分离卷积和多级特征的实例分割[J]. 软件学报, 2019, 30(4): 954–961
WANG Ziyu, YUAN Chun, LI Jiancheng. Instance segmentation with separable convolutions and multi-level features[J]. Journal of software, 2019, 30(4): 954–961
[38] BOLYA D, ZHOU Chong, XIAO Fanyi, et al. YOLACT: real-time instance segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision. New York, USA: IEEE, 2019: 9156?9165.
[39] Bolya D, Zhou C, Xiao F, et al. Yolact++: Better real-time instance segmentation[EB/OL]. (2020-08-05) [2021-09-30].https://pubmed.ncbi.nlm.nih.gov/32755851/
[40] TIAN Zhi, SHEN Chunhua, CHEN Hao. Conditional convolutions for instance segmentation[M]//Computer Vision – ECCV 2020. Berlin, German: Springer, 2020: 282?298.
[41] WANG Xinlong, KONG Tao, SHEN Chunhua, et al. SOLO: segmenting objects by locations[M]//Computer Vision – ECCV 2020. Berlin, German: Springer, 2020: 649?665.
[42] 李晓筱, 胡晓光, 王梓强, 等. 基于深度学习的实例分割研究进展[J]. 计算机工程与应用, 2021, 57(9): 60–67
LI Xiaoxiao, HU Xiaoguang, WANG Ziqiang, et al. Survey of instance segmentation based on deep learning[J]. Computer engineering and applications, 2021, 57(9): 60–67
[43] WANG X, ZHANG R, KONG T, et al. SOLOv2: Dynamic and fast instance segmentation[EB/OL]. (2020-03-23) [2021-09-30]. https://arxiv.org/abs/2003.10152.
[44] NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]//18th International Conference on Pattern Recognition. New York, USA: IEEE, 2006: 850?855.
[45] QI LU, ZHANG XIANGYU, CHEN YINGCONG, et al. PointINS: point-based instance segmentation[EB/OL]. (2020-03-13) [2021-09-30].https://arxiv.org/abs/2003.06148v1.
[46] WANG Yuqing, XU Zhaoliang, SHEN Hao, et al. CenterMask: single shot instance segmentation with point representation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2020: 9310?9318.
[47] CHEN Hao, SUN Kunyang, TIAN Zhi, et al. BlendMask: top-down meets bottom-up for instance segmentation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2020: 8570?8578.
[48] SOFIIUK K, SOFIYUK K, BARINOVA O, et al. AdaptIS: adaptive instance selection network[C]//2019 IEEE/CVF International Conference on Computer Vision. New York, USA: IEEE, 2019: 7354?7362.
[49] CHEN Xinlei, GIRSHICK R, HE Kaiming, et al. TensorMask: a foundation for dense object segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision. New York, USA: IEEE, 2019: 2061?2069.
[50] XIE Enze, SUN Peize, SONG Xiaoge, et al. PolarMask: single shot instance segmentation with polar representation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2020: 12190?12199.
[51] PENG Sida, JIANG Wen, PI Huaijin, et al. Deep snake for real-time instance segmentation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2020: 8530?8539.
[52] ZHANG Rufeng, TIAN Zhi, SHEN Chunhua, et al. Mask encoding for single shot instance segmentation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2020: 10223?10232.
[53] DUAN KAIWEN, XIE LINGXI, QI HONGGANG, et al. Location-sensitive visual recognition with cross-IOU loss[EB/OL]. (2021-04-11) [2021-09-30].https://arxiv.org/abs/2104.04899.
[54] CHENG BOWEN, PARKHI O, KIRILLOV A. Pointly-supervised instance segmentation[EB/OL]. (2021-04-13) [2021-09-30].https://arxiv.org/abs/2104.06404
[55] LEE Jungbeom, YI Jihun, SHIN Chaehun, et al. BBAM: bounding box attribution map for weakly supervised semantic and instance segmentation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2021: 2643?2651.
[56] HU J, CAO L, LU Y, et al. ISTR: End-to-End Instance Segmentation with Transformers [EB/OL]. (2020-11-30) [2021-09-30].https://arxiv.org/abs/2011.14503v4.
[57] GUO R, NIU D, QU L, et al. SOTR: Segmenting Objects with Transformers [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2021: 7157?7166.
[58] CHEN Kai, PANG Jiangmiao, WANG Jiaqi, et al. Hybrid task cascade for instance segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2019: 4969?4978.
[59] CAI Zhaowei, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(5): 1483–1498.
[60] WANG Shaoru, GONG Yongchao, XING Junliang, et al. RDSNet: a new deep architecture forReciprocal object detection and instance segmentation[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(7): 12208–12215.
[61] Ying H, Huang Z, Liu S, et al. Embedmask: Embedding coupling for one-stage instance segmentation [EB/OL]. (2019-12-04) [2021-09-30].https://arxiv.org/abs/1912.01954.
[62] 惠健, 秦其明, 许伟, 等. 基于多任务学习的高分辨率遥感影像建筑实例分割[J]. 北京大学学报(自然科学版), 2019, 55(6): 1067–1077
HUI Jian, QIN Qiming, XU Wei, et al. Instance segmentation of buildings from high-resolution remote sensing images with multitask learning[J]. Acta scientiarum naturalium universitatis pekinensis, 2019, 55(6): 1067–1077
[63] 何代毅, 施文灶, 林志斌, 等. 基于改进Mask-RCNN的遥感影像建筑物提取[J]. 计算机系统应用, 2020, 29(9): 156–163
HE Daiyi, SHI Wenzao, LIN Zhibin, et al. Building extraction from remote sensing image based on improved mask-RCNN[J]. Computer systems & applications, 2020, 29(9): 156–163
[64] 宋师然. 高分遥感城市建筑物对象化识别方法研究[D]. 北京: 北京建筑大学, 2020.
SONG Shiran. Research on object recognition method of urban buildings in high spatial resolution remote sensing imagery[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020.
[65] 瑚敏君, 冯德俊, 李强. 基于实例分割模型的建筑物自动提取[J]. 测绘通报, 2020(4): 16–20,62
HU Minjun, FENG Dejun, LI Qiang. Automatic extraction of buildings based on instance segmentation model[J]. Bulletin of surveying and mapping, 2020(4): 16–20,62
[66] 于志文. 基于语义分割和实例分割的高分辨率遥感影像建筑物提取方法研究[D]. 桂林: 桂林理工大学, 2020.
YU Zhiwen. Research on building extraction method of high resolution remote sensing images based on semantic segmentation and instance segmentation[D]. Guilin: Guilin University of Technology, 2020.
[67] 朱意星. 基于深度学习的文本与遥感图像目标检测研究[D]. 合肥: 中国科学技术大学, 2020.
ZHU Yixing. Research on deep learning based object detection for text and aerial image[D]. Hefei: University of Science and Technology of China, 2020.
[68] 刘春, 田倬韬, 刘绍辉, 等. 一种改进的图像中的文本检测模型[J]. 微电子学与计算机, 2020, 37(6): 83–88
LIU Chun, TIAN Zhuotao, LIU Shaohui, et al. An improved text detection model in image[J]. Microelectronics & computer, 2020, 37(6): 83–88
[69] 张小爽. 基于实例分割的场景图像文字检测[D]. 杭州: 浙江大学, 2018.
ZHANG Xiaoshuang. Scene text detection based on instance segmentation[D]. Hangzhou: Zhejiang University, 2018.
[70] 李煌, 王晓莉, 项欣光. 基于文本三区域分割的场景文本检测方法[J]. 计算机科学, 2020, 47(11): 142–147
LI Huang, WANG Xiaoli, XIANG Xinguang. Scene text detection based on triple segmentation[J]. Computer science, 2020, 47(11): 142–147
[71] 邓宏杰. 基于Mask R-CNN的人脸检测分割的改进研究[J]. 现代计算机, 2020(27): 57–62,67
DENG Hongjie. Research on the improvement of face detection and segmentation algorithm based on mask R-CNN[J]. Modern computer, 2020(27): 57–62,67
[72] 王耀东. 基于Mask RCNN神经网络的行人重识别研究[D]. 西安: 西安科技大学, 2020.
WANG Yaodong. Person Re-identification research based on mask RCNN neural network[D]. Xi’an: Xi’an University of Science and Technology, 2020.
[73] 蔡英凤, 张田田, 王海, 等. 基于实例分割和自适应透视变换算法的多车道线检测[J]. 东南大学学报(自然科学版), 2020, 50(4): 775–781
CAI Yingfeng, ZHANG Tiantian, WANG Hai, et al. Multi-lane detection based on instance segmentation and adaptive perspective transformation[J]. Journal of southeast university (natural science edition), 2020, 50(4): 775–781
[74] 田锦, 袁家政, 刘宏哲. 基于实例分割的车道线检测及自适应拟合算法[J]. 计算机应用, 2020, 40(7): 1932–1937
TIAN Jin, YUAN Jiazheng, LIU Hongzhe. Instance segmentation based lane line detection and adaptive fitting algorithm[J]. Journal of computer applications, 2020, 40(7): 1932–1937
[75] 栗杰. 基于深度学习的现实交通场景下目标检测算法研究[D]. 大连: 大连海事大学, 2020.
LI Jie. Research on object detection algorithm in real traffic scene based on deep learning[D]. Dalian: Dalian Maritime University, 2020.
[76] 王中宇, 倪显扬, 尚振东. 利用卷积神经网络的自动驾驶场景语义分割[J]. 光学 精密工程, 2019, 27(11): 2429–2438
WANG Zhongyu, NI Xianyang, SHANG Zhendong. Autonomous driving semantic segmentation with convolution neural networks[J]. Optics and precision engineering, 2019, 27(11): 2429–2438
[77] 赵旭. 基于医学先验的多尺度乳腺超声肿瘤实例分割方法[D]. 哈尔滨: 哈尔滨工业大学, 2019.
ZHAO Xu. Medical knowledge constrained instance segmentation method for multi-scale breast ultrasound tumor[D]. Harbin: Harbin Institute of Technology, 2019.
[78] 郑杨, 梁光明, 刘任任. 基于Mask R-CNN的宫颈细胞图像分割[J]. 计算机时代, 2020(10): 68–72
ZHENG Yang, LIANG Guangming, LIU Renren. Cervical cell image segmentation based on Mask R-CNN[J]. Computer era, 2020(10): 68–72
[79] 王昌安. 遥感影像中的近岸舰船目标检测和细粒度识别方法研究[D]. 武汉: 华中科技大学, 2019.
WANG Chang’an. Detection and fine-grained recognition of inshore ships on optical remote sensing images[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[80] 李澜. 基于Mask R-CNN的高分辨率光学遥感影像的目标检测与实例分割[D]. 武汉: 武汉大学, 2018.
LI Lan. Object detection and instance segmentation in optical high-resolution remote sensing imagery based on mask R-CNN[D]. Wuhan: Wuhan University, 2018.
[81] 刘一丁. 基于像素亲和性和语义信息的图像实例分割研究[D]. 合肥: 中国科学技术大学, 2020.
LIU Yiding. Pixel-affinity-aware and semantic-aware image instance segmentation[D]. Hefei: University of Science and Technology of China, 2020.
[82] 张继凯, 赵君, 张然, 等. 深度学习的图像实例分割方法综述[J]. 小型微型计算机系统, 2021, 42(1): 161–171
ZHANG Jikai, ZHAO Jun, ZHANG Ran, et al. Survey of image instance segmentation methods using deep learning[J]. Journal of Chinese computer systems, 2021, 42(1): 161–171
[83] 邓琉元, 杨明, 王春香, 等. 基于环视相机的无人驾驶汽车实例分割方法[J]. 华中科技大学学报(自然科学版), 2018, 46(12): 24–29
DENG Liuyuan, YANG Ming, WANG Chunxiang, et al. Surround view cameras based instance segmentation method for autonomous vehicles[J]. Journal of Huazhong university of science and technology (natural science edition), 2018, 46(12): 24–29
[84] 陈健雄. 基于实例分割的中低速磁浮接触轨紧固件松动识别[D]. 成都: 西南交通大学, 2019.
CHEN Jianxiong. Fastener looseness recognition of medium-low speed maglev contact rail based on instance segmentation[D]. Chengdu: Southwest Jiaotong University, 2019.
[85] 吴宇. 基于深度学习的椎骨实例分割算法研究[D]. 成都: 电子科技大学, 2020.
WU Yu. Research of vertebra instance segmentation based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[86] 范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学 精密工程, 2020, 28(5): 1152–1164
FAN Lili, ZHAO Hongwei, ZHAO Haoyu, et al. Survey of target detection based on deep convolutional neural networks[J]. Optics and precision engineering, 2020, 28(5): 1152–1164
[87] LIN Tsungyi, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Computer vision—ECCV 2014. Berlin, German: Springer, 2014: 740–755.
[88] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 3213–3223.
[89] NEUHOLD G, OLLMANN T, BULò S R, et al. The mapillary vistas dataset for semantic understanding of street scenes[C]//2017 IEEE International Conference on Computer Vision. New York, USA: IEEE, 2017: 5000–5009.
[90] GUPTA A, DOLLáR P, GIRSHICK R. LVIS: a dataset for large vocabulary instance segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2019: 5351–5359.
[91] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017(29): 5998–6008.
[92] LIU ZE, LIN YUTONG, CAO YUE, et al. Swin transformer: hierarchical vision transformer using shifted windows[EB/OL]. (2021-03-25) [2021-09-30].https://arxiv.org/abs/2103.14030.
[93] HAN KAI, WANG YUNHE, CHEN HANTING, et al. A survey on visual transformer[EB/OL]. (2020-12-23) [2021-09-30]. https://arxiv.org/abs/2012.12556v1.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems