[1]DUAN Xiao,MA Gang,WEI Hui.Hand-eye coordination of robots based on the 3D object tracking algorithm[J].CAAI Transactions on Intelligent Systems,2022,17(5):941-950.[doi:10.11992/tis.202107037]
Copy

Hand-eye coordination of robots based on the 3D object tracking algorithm

References:
[1] HUTCHINSON S, HAGER G D, CORKE P I. A tutorial on visual servo control[J]. IEEE transactions on robotics and automation, 1996, 12(5): 651–670.
[2] HAGER G D, CHANG W C, MORSE A S. Robot hand-eye coordination based on stereo vision[J]. IEEE control systems magazine, 1995, 15(1): 30–39.
[3] HELLER J, HAVLENA M, PAJDLA T. Globally optimal hand-eye calibration using branch-and-bound[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(5): 1027–1033.
[4] LI Wenlong, XIE He, ZHANG Gang, et al. Hand-eye calibration in visually-guided robot grinding[J]. IEEE transactions on cybernetics, 2016, 46(11): 2634–2642.
[5] GOODALE M A, MILNER A D. Separate visual pathways for perception and action[J]. Trends in neurosciences, 1992, 15(1): 20–25.
[6] GOODALE M A. Transforming vision into action[J]. Vision research, 2011, 51(13): 1567–1587.
[7] YILMAZ A, JAVED O, SHAH M. Object tracking[J]. ACM computing surveys, 2006, 38(4): 13.
[8] KLEIN G, MURRAY D W. Full-3D edge tracking with a particle filter[C]//Proceedings ofthe British Machine Vision Conference 2006. Edinburgh. British Machine Vision Association, 2006: 1119–1128.
[9] WAGNER D, REITMAYR G, MULLONI A, et al. Real-time detection and tracking for augmented reality on mobile phones[J]. IEEE transactions on visualization and computer graphics, 2010, 16(3): 355–368.
[10] KIM K, LEPETIT V, WOO W. Keyframe-based modeling and tracking of multiple 3D objects[C]//2010 IEEE International Symposium on Mixed and Augmented Reality. Seoul, IEEE, 2010: 193–198.
[11] CRIVELLARO A, RAD M, VERDIE Y, et al. Robust 3D object tracking from monocular images using stable parts[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(6): 1465–1479.
[12] HINTERSTOISSER S, LEPETIT V, ILIC S, et al. Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes[M]//Computer Vision – ACCV 2012. Berlin: Springer Berlin Heidelberg, 2013: 548–562.
[13] WANG Chen, XU Danfei, ZHU Yuke, et al. DenseFusion: 6D object pose estimation by iterative dense fusion[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, IEEE, 2019: 3338–3347.
[14] PENG Sida, LIU Yuan, HUANG Qixing, et al. PVNet: pixel-wise voting network for 6DoF pose estimation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, IEEE, 2019: 4556–4565.
[15] PRISACARIU V A, REID I D. PWP3D: real-time segmentation and tracking of 3D objects[J]. International journal of computer vision, 2012, 98(3): 335–354.
[16] TJADEN H, SCHWANECKE U, SCH?MER E. Real-time monocular segmentation and pose tracking of multiple objects[M]//Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 423–438.
[17] TJADEN H, SCHWANECKE U, SCH?MER E. Real-time monocular pose estimation of 3D objects using temporally consistent local color histograms[C]//2017 IEEE International Conference on Computer Vision. Venice, IEEE, 2017: 124–132.
[18] TJADEN H, SCHWANECKE U, SCH?MER E, et al. A region-based Gauss-Newton approach to real-time monocular multiple object tracking[J]. IEEE transactions on pattern analysis and machine intelligence, 2019, 41(8): 1797–1812.
[19] HEXNER J, HAGEGE R R. 2D-3D pose estimation of heterogeneous objects using a region based approach[J]. International journal of computer vision, 2016, 118(1): 95–112.
[20] 张雪华, 刘华平, 孙富春, 等. 采用Kinect的移动机器人目标跟踪[J]. 智能系统学报, 2014, 9(1): 34–39
ZHANG Xuehua, LIU Huaping, SUN Fuchun, et al. Target tracking of mobile robot using Kinect[J]. CAAI transactions on intelligent systems, 2014, 9(1): 34–39
[21] 贺超, 刘华平, 孙富春, 等. 采用Kinect的移动机器人目标跟踪与避障[J]. 智能系统学报, 2013, 8(5): 426–432
HE Chao, LIU Huaping, SUN Fuchun, et al. Target tracking and obstacle avoidance of mobile robot using Kinect[J]. CAAI transactions on intelligent systems, 2013, 8(5): 426–432
[22] 韩峥, 刘华平, 黄文炳, 等. 基于Kinect的机械臂目标抓取[J]. 智能系统学报, 2013, 8(2): 149–155
HAN Zheng, LIU Huaping, HUANG Wenbing, et al. Kinect-based object grasping by manipulator[J]. CAAI transactions on intelligent systems, 2013, 8(2): 149–155
[23] 徐呈艺, 刘英, 贾民平, 等. 木板抓取冗余机械臂逆运动学求解[J]. 计算机集成制造系统, 2020, 26(12): 3368–3374
XU Chengyi, LIU Ying, JIA Minping, et al. Inverse kinematics solution of redundant robot arm in picking board[J]. Computer integrated manufacturing systems, 2020, 26(12): 3368–3374
[24] 臧雨飞. 基于机器视觉的机械臂半自主控制系统的研究[D]. 南京: 东南大学, 2018.
ZANG Yufei. The research on semi-autonomous control system of mechanical arm based on machine vision[D]. Nanjing: Southeast University, 2018.
[25] DU Guoguang, WANG Kai, LIAN Shiguo, et al. Vision-based robotic grasping from object localization, object pose estimation to grasp estimation for parallel grippers: a review[J]. Artificial intelligence review, 2021, 54(3): 1677–1734.
[26] FERR?O J, DIAS P, NEVES A J R. Detection of aruco markers using the quadrilateral sum conjuncture[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018: 363–369.
[27] LEPETIT V, MORENO-NOGUER F, FUA P. EPnP: an accurate O(n) solution to the PnP problem[J]. International journal of computer vision, 2008, 81(2): 155–166.
[28] MISRA A, SINGH G. Kinematic and dynamic analysis of an industrial six-axis robotic manipulator[C]// International Conference on Robotics, Automation and Non-destructive Evaluation. [S.l.]: 2019.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems