[1]LIU Xiangnan,DING Shifei,WANG Lijuan.A multi-view clustering algorithm based on deep matrix factorization with graph regularization[J].CAAI Transactions on Intelligent Systems,2022,17(1):158-169.[doi:10.11992/tis.202104046]
Copy

A multi-view clustering algorithm based on deep matrix factorization with graph regularization

References:
[1] 唐静静, 田英杰. 多视角学习综述[J]. 数学建模及其应用, 2017, 6(3): 1–15,25
TANG Jingjing, TIAN Yingjie. A survey on multi-view learning[J]. Mathematical modeling and its applications, 2017, 6(3): 1–15,25
[2] 何雪梅. 多视图聚类算法综述[J]. 软件导刊, 2019, 18(4): 79–81,86
HE Xuemei. A survey of multi-view clustering AlgorithmsChinese full text[J]. Software guide, 2019, 18(4): 79–81,86
[3] WANG Qianqian, DING Zhengming, TAO Zhiqiang, et al. Partial multi-view clustering via consistent GAN[C]//2018 IEEE International Conference on Data Mining. New York, USA: IEEE, 2018: 1290?1295.
[4] CHAO Guoqing, SUN Shiliang, BI Jinbo. A survey on multiview clustering[J]. IEEE transactions on artificial intelligence, 2021, 2(2): 146–168.
[5] YANG Yan, WANG Hao. Multi-view clustering: a survey[J]. Big data mining and analytics, 2018, 1(2): 83–107.
[6] ZHANG Guangyu, ZHOU Yuren, WANG Changdong, et al. Joint representation learning for multi-view subspace clustering[J]. Expert systems with applications, 2021, 166: 113913.
[7] 伍国鑫, 刘秉权, 刘铭. 一种改进的多视图K-均值聚类算法[J]. 智能计算机与应用, 2014, 4(3): 11–14,18
WU Guoxin, LIU Bingquan, LIU Ming. An improved multi-view K-means clustering algorithm[J]. Intelligent computer and applications, 2014, 4(3): 11–14,18
[8] XU Jinglin, HAN Junwei, NIE Feiping. Discriminatively embedded K-means for multi-view clustering[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 5356?5364.
[9] YANG M S, SINAGA K P. A feature-reduction multi-view k-means clustering algorithm[J]. IEEE access, 2019, 7: 114472–114486.
[10] NIE Feiping, CAI G, LI Xuelong. Multi-view clustering and semi-supervised classification with adaptive neighbours[C]//31th AAAI Conference on Artificial Intelligence. San Francisco, California. AAAI, 2017: 2408?2414.
[11] NIE Feiping, LI Jing, LI Xuelong. Self-weighted multiview clustering with multiple graphs[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne, Australia: International Joint Conferences on Artificial Intelligence Organization, 2017: 2564?2570.
[12] GAO Hongchang, NIE Feiping, LI Xuelong, et al. Multi-view subspace clustering[C]//2015 IEEE International Conference on Computer Vision. New York, USA: IEEE, 2015: 4238?4246.
[13] 黄静. 加权多视图子空间聚类算法研究[D]. 广州: 广东工业大学, 2019: 1?65.
HUANG Jing. Research on weighted multi-view subspace clustering algorithm[D]. Guangzhou: Guangdong University of Technology, 2019: 1?65.
[14] 范瑞东, 侯臣平. 鲁棒自加权的多视图子空间聚类[J]. 计算机科学与探索, 2021, 15(6): 1062–1073
FAN Ruidong, HOU Chenping. Robust auto-weighted multi-view subspace clustering[J]. Journal of frontiers of computer science and technology, 2021, 15(6): 1062–1073
[15] ZHENG Qinghai, ZHU Jihua, LI Zhongyu, et al. Feature concatenation multi-view subspace clustering[J]. Neurocomputing, 2020, 379: 89–102.
[16] 张祎. 多视图矩阵分解的聚类分析[D]. 大连: 大连理工大学, 2018: 1?69.
ZHANG Yi. Clustering analysis on multi-view matrix factorization[D]. Dalian: Dalian University of Technology, 2018: 1?69.
[17] 张祎, 孔祥维, 王振帆, 等. 基于多视图矩阵分解的聚类分析[J]. 自动化学报, 2018, 44(12): 2160–2169
ZHANG Yi, KONG Xiangwei, WANG Zhenfan, et al. Matrix factorization for multi-view clustering[J]. Acta automatica sinica, 2018, 44(12): 2160–2169
[18] DING C, LI Tao, JORDAN M I. Convex and semi-nonnegative matrix factorizations[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(1): 45–55.
[19] TRIGEORGIS G, BOUSMALIS K, ZAFEIRIOU S, et al. A deep semi-nmf model for learning hidden representations[C]//International Conference on Machine Learning. Beijing, China. PMLR, 2014: 1692?1700.
[20] ZHAO Handong, DING Zhengming, FU Yun. Multi-view clustering via deep matrix factorization[C]// 31th AAAI Conference on Artificial Intelligence. San Francisco, California. AAAI, 2017: 2921?2927.
[21] HU Juncheng, LI Yonghao, GAO Wanfu, et al. Robust multi-label feature selection with dual-graph regularization[J]. Knowledge-based systems, 2020, 203: 106126.
[22] ZONG Linlin, ZHANG Xianchao, ZHAO Long, et al. Multi-view clustering via multi-manifold regularized non-negative matrix factorization[J]. Neural networks, 2017, 88: 74–89.
[23] ZHANG Xinyu, GAO Hongbo, LI Guopeng, et al. Multi-view clustering based on graph-regularized nonnegative matrix factorization for object recognition[J]. Information sciences, 2018, 432: 463–478.
[24] ZHAO Handong, DING Zhengming, SHAO Ming, et al. Part-level regularized semi-nonnegative coding for semi-supervised learning[C]//2015 IEEE International Conference on Data Mining. New York, USA: IEEE, 2015: 1123?1128.
[25] BELKINZ M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[J]Advances in neural information processing systems. 2001, 14: 585?591.
[26] ISCEN A, TOLIAS G, AVRITHIS Y, et al. Label propagation for deep semi-supervised learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2019: 5065?5074.
[27] HU Hongwei, MA Bo, SHEN Jianbing, et al. Manifold regularized correlation object tracking[J]. IEEE transactions on neural networks and learning systems, 2018, 29(5): 1786–1795.
[28] BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural computation, 2003, 15(6): 1373–1396.
[29] HINTON G, ROWEIS S T. Stochastic neighbor embedding[C]//2002 Neural Information Processing Systems. New York, USA: ACM, 2002, 15: 833?840.
[30] CARREIRA-PERPINAN M A. The elastic embedding algorithm for dimensionality reduction[C]//2010 International Conference on Machine Learning. New York, USA: ACM, 2010, 10: 167?174.
[31] LI Zhihui, NIE Feiping, CHANG Xiaojun, et al. Balanced clustering via exclusive lasso: a pragmatic approach[C]//2018 AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI, 2018, 32(1): 3596?3603.
[32] NG A, JORDAN M, WEISS Y. On spectral clustering: analysis and an algorithm[J]. Advances in Neural Information Processing Systems, 2001, 14: 849–856.
[33] KUMAR A, RAI P, DAUME H. Co-regularized multi-view spectral clustering[J]. Advances in Neural Information Processing Systems, 2011, 24: 1413–1421.
[34] KUMAR A, DAUME H. A co-training approach for multi-view spectral clustering[C]//28th International Conference on Machine Learning. New York, USA: ACM, 2011: 393–400.
[35] DE Sa V R. Spectral clustering with two views[C]//2005 ICML workshop on learning with multiple views. New York, USA: ACM, 2005: 20?27.
[36] CAO Xiaochun, ZHANG Changqing, FU Huazhu, et al. Diversity-induced Multi-view subspace clustering[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2015: 586?594.
[37] LI Shaoyuan, JIANG Yuan, ZHOU Zhihua. Partial multi-view clustering[C]//2014 AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI, 2014: 1968?1974.
[38] RAI N, NEGI S, CHAUDHURY S, et al. Partial multi-view clustering using graph regularized NMF[C]//2016 23rd International Conference on Pattern Recognition. New York, USA: IEEE, 2016: 2192?2197.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems