[1]LI Qianqian,SHEN Xiaoyan,REN Fuji,et al.Investigation of multiple speech emotion classification algorithms based on data enhancement[J].CAAI Transactions on Intelligent Systems,2021,16(1):170-177.[doi:10.11992/tis.202103005]
Copy

Investigation of multiple speech emotion classification algorithms based on data enhancement

References:
[1] 吴雪, 宋晓茹, 高嵩, 等. 基于数据增强的卷积神经网络火灾识别[J]. 科学技术与工程, 2020, 20(3):1113-1117.
WU Xue, SONG Xiaoru, GAO Song, et al. Convolution neural network based on data enhancement for fire identification[J]. Science technology and engineering, 2020, 20(3):1113-1117.
[2] CHATZIAGAPI A, PARASKEVOPOULOS G, SGOUROPOULOS D, et al. Data augmentation using GANs for speech emotion recognition[C]//Proceedings of the 20th Annual Conference of the International Speech Communication Association. Graz, Austria, 2019.
[3] ESCUDERO J P, NOVOA J, MAHU R, et al. An improved DNN-based spectral feature mapping that removes noise and reverberation for robust automatic speech recognition[J]. arXiv:1803.09016, 2018.
[4] REN Fuji, MATSUMOTO K. Semi-automatic creation of youth slang corpus and its application to affective computing[J]. IEEE transactions on affective computing, 2016, 7(2):176-189.
[5] KAWASE T, NIWA K, HIOKA Y, et al. Automatic parameter switching of noise reduction for speech recognition[J]. Journal of signal processing, 2017, 21(2):63-71.
[6] YOUSEFI H, KANI A T, KANI I M, et al. Wavelet-based iterative data enhancement for implementation in purification of modal frequency for extremely noisy ambient vibration tests in Shiraz-lran[J]. Frontiers of structural and civil engineering, 2020, 14(2):446-472.
[7] ELBAROUGY R, AKAGI M. Feature selection method for real-time speech emotion recognition[C]//Proceedings of the 20th Conference of the Oriental Chapter of the International Coordinating Committee on Speech Databases and Speech I/O Systems and Assessment. Seoul, Korea, 2017:1-6.
[8] MANGALAM K, GUHA T. Learning spontaneity to improve emotion recognition in speech[C]//Proceedings of the 19th Annual Conference of the International Speech Communication Association. Hyderabad, India, 2018.
[9] CUBUK E D, ZOPH B, MANé D, et al. AutoAugment:learning augmentation strategies from data[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA, 2019.
[10] CHEN Mingyi, HE Xuanji, YANG Jing, et al. 3-D convolutional recurrent neural networks with atten-tion model for speech emotion recognition[J]. IEEE signal processing letters, 2018, 25(10):1440-1444.
[11] SCHULLER B W, STEIDL S, BATLINER A, et al. The INTERSPEECH 2010 paralinguistic challenge[C]//Proceedings of the 11th Annual Conference of the International Speech Communication Association. Makuhari, Chiba, Japan, 2010:1342-6230.
[12] BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[C]//Proceedings of the 5th Annual Workshop on Computational Learning Theory. Pittsburgh, PA, USA, 1992:144-152.
[13] VAPNIK V N. The nature of statistical learning theory[M]. New York:Springer-Verlag, 1995.
[14] VAPNIK V N. An overview of statistical learning the-ory[J]. IEEE transactions on neural networks, 1999, 10(5):988-999.
[15] 戴志诚, 李小年, 陈增照, 等. 基于KNN算法的可变权值室内指纹定位算法[J]. 计算机工程, 2019, 45(6):310-314.DAI Zhicheng, LI Xiaonian, CHEN Zengzhao, et al. Variable-weight indoor fingerprinting localization algorithm based on KNN algorithm[J]. Computer engineering, 2019, 45(6):310-314.
[16] LARIJANI M R, ASLI-ARDEH E A, KOZEGAR E, et al. Evaluation of image processing technique in identifying rice blast disease in field conditions based on KNN algorithm improvement by K-means[J]. Food science & nutrition, 2019, 7(12):3922-3930.
[17] SATHISHKUMAR R, KALAIARASAN K, PRABHAKARAN A, et al. Detection of lung cancer using SVM classifier and KNN algorithm[C]//Proceedings of 2019 IEEE International Conference on System, Computation, Automation and Networking. Pondicherry, India, 2019.
[18] 连天友, 余勤. 改进KNN算法对人体身份的识别[J]. 计算机工程与应用, 2019, 55(11):142-146, 243.LIAN Tianyou, YU Qin. Human identity recognition using improved KNN method[J]. Computer engineering and applications, 2019, 55(11):142-146, 243.
[19] PAUL A, MUKHERJEE D P, DAS P, et al. Improved random forest for classification[J]. IEEE transactions on image processing, 2018, 27(8):4012-4024.
[20] YE?ILKANAT C M. Spatio-temporal estimation of the daily cases of COVID-19 in worldwide using random forest machine learning algorithm[J]. Chaos, solitons & fractals, 2020, 140:1-8.
[21] BUTT A M, BHATTI Y K, HUSSAIN F. Emotional speech recognition using SMILE features and random forest tree[M]. BI Yaxin, BHATIA R, KAPOOR S. Intelligent Systems and Applications. Cham:Springer, 2020.
[22] DAI Jingzhao, ZHANG Yaan, HOU Jintao, et al. Sparse wavelet decomposition and filter banks with CNN deep learning for speech recognition[C]//Proceedings of 2019 IEEE International Conference on Electro Information Technology. Brookings, SD, USA, 2019.
Similar References:

Memo

-

Last Update: 2021-02-25

Copyright © CAAI Transactions on Intelligent Systems