[1]SHENG Ziqi,HUO Guanying.Detection of underwater mine target in sidescan sonar image based on sample simulation and transfer learning[J].CAAI Transactions on Intelligent Systems,2021,16(2):385-392.[doi:10.11992/tis.202101030]
Copy

Detection of underwater mine target in sidescan sonar image based on sample simulation and transfer learning

References:
[1] KUMAR N, MITRA U, NARAYANAN S. Robust object classification in underwater sidescan sonar images by using reliability-aware fusion of shadow features[J]. IEEE journal of oceanic engineering, 2015, 40(3):592-606.
[2] BARNGROVER C, ALTHOFF A, DEGUZMAN P, et al. A brain-computer interface (BCI) for the detection of mine-like objects in sidescan sonar imagery[J]. IEEE journal of oceanic engineering, 2016, 41(1):123-138.
[3] ACOSTA G G, VILLAR S A. Accumulated CA-CFAR process in 2-D for online object detection from sidescan sonar data[J]. IEEE journal of oceanic engineering, 2015, 40(3):558-569.
[4] BARNGROVER C, KASTNER R, BELONGIE S. Semisynthetic versus real-world sonar training data for the classification of mine-like objects[J]. IEEE journal of oceanic engineering, 2015, 40(1):48-56.
[5] DANIEL S, Le LEANNEC F, ROUX C, et al. Side-scan sonar image matching[J]. IEEE journal of oceanic engineering, 1998, 23(3):254-259.
[6] BRYNER D, SRIVASTAVA A, HUYNH Q. Elastic shapes models for improving segmentation of object boundaries in synthetic aperture sonar images[J]. Computer vision and image understanding, 2013, 117(12):1695-1710.
[7] FANDOS R, ZOUBIR A M. Optimal feature set for automatic detection and classification of underwater objects in SAS images[J]. IEEE journal of selected topics in signal processing, 2011, 5(3):454-468.
[8] CHO H, GU J, YU S C. Robust sonar-based underwater object recognition against angle-of-view variation[J]. IEEE sensors journal, 2016, 16(4):1013-1025.
[9] SAWAS J, PETILLOT Y, PAILHAS Y. Cascade of boosted classifiers for rapid detection of underwater objects[C]//Proceedings of the European Conference on Underwater Acoustics.[S.l.]2010, 10:1-8.
[10] FEI Tai, KRAUS D, ZOUBIR A M. Contributions to automatic target recognition systems for underwater mine classification[J]. IEEE transactions on geoscience and remote sensing, 2015, 53(1):505-518.
[11] SUN Yi, WANG Xiaogang, TANG Xiaoou. Deep learning face representation from predicting 10, 000 classes[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:1891-1898.
[12] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6):1137-1149.
[13] REDMON J, FARHADI A. YOLOv3:an incremental improvement[J]. arXiv e-prints arXiv:1804.02767, 2018.
[14] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[J]. arXiv preprint arXiv:1512.02325, 2016.
[15] YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014:3320-3328.
[16] PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE transactions on knowledge and data engineering, 2010, 22(10):1345-1359.
[17] WANG Yuanyuan, WANG Chao, ZHANG Hong, et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote sensing, 2019, 11(7):765.
[18] HUO Guanying, WU Ziyin, LI Jiabiao. Underwater object classification in sidescan sonar images using deep transfer learning and semisynthetic training data[J]. IEEE access, 2020, 8:47407-47418.
[19] OQUAB M, BOTTOU L, LAPTEV L, et al. Learning and transferring mid-Level image representations using convolutional neural networks[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:1717-1724.
Similar References:

Memo

-

Last Update: 2021-04-25

Copyright © CAAI Transactions on Intelligent Systems