[1]GAO Shangbing,HUANG Zihe,GENG Xuan,et al.A visual collaborative analysis method for detecting illegal driving behavior[J].CAAI Transactions on Intelligent Systems,2021,16(6):1158-1165.[doi:10.11992/tis.202101024]
Copy

A visual collaborative analysis method for detecting illegal driving behavior

References:
[1] 张慧, 王坤峰, 王飞跃. 深度学习在目标视觉检测中的应用进展与展望[J]. 自动化学报, 2017, 43(8): 1289-1305
ZHANG Hui, WANG Kunfeng, WANG Feiyue. Advances and perspectives on applications of deep learning in visual object detection[J]. Acta automatica sinica, 2017, 43(8): 1289-1305
[2] LE T H N, ZHENG Yutong, ZHU Chenchen, et al. Multiple scale faster-RCNN approach to driver’s cell-phone usage and hands on steering wheel detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Las Vegas, USA, 2016: 46-53.
[3] 李俊俊, 杨华民, 张澍裕, 等. 基于神经网络融合的司机违规行为识别[J]. 计算机应用与软件, 2018, 35(12): 222-227, 319
LI Junjun, YANG Huamin, ZHANG Shuyu, et al. Driver’s illegal behavior recognition based on neural network fusion[J]. Computer applications and software, 2018, 35(12): 222-227, 319
[4] 魏泽发. 基于深度学习的出租车司机违规行为检测[D]. 西安: 长安大学, 2019.
WEI Zefa. Taxi driver violation detection based on deep learning[D]. Xi’an: Chang’an University, 2019.
[5] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 21-37.
[6] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2020-12-03] https://arxiv.org/abs/1409.1556.
[7] JIN Chongchong, ZHU Zhongjie, BAI Yongqiang, et al. A deep-learning-based scheme for detecting driver cell-phone use[J]. IEEE access, 2020, 8: 18580-18589.
[8] HUANG Chen, WANG Xiaochen, CAO Jiannong, et al. HCF: a hybrid CNN framework for behavior detection of distracted drivers[J]. IEEE access, 2020, 8: 109335-109349.
[9] HE Anqing, CHEN Guohua, ZHENG Wei, et al. Driver cell-phone use detection based on CornerNet-Lite network[C]//OP Conference Series: Earth and Environmental Science. Smolensk, Russian, 2021: 042004.
[10] LAW H, TENG Yun, RUSSAKOVSKY O, et al. Cornernet-lite: efficient keypoint based object detection[EB/OL]. (2019-04-18)[2020-12-03] https://arxiv:1904.08900.2019.
[11] MASOOD S, RAI A, AGGARWAL A, et al. Detecting distraction of drivers using convolutional neural network[J]. Pattern recognition letters, 2020, 139: 79-85.
[12] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2020-12-03] https://arxiv.org/abs/2004.10934.
[13] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL].(2018-04-08)[2020-12-03] https://arxiv.org/abs/1804.020767.
[14] TAN Mingxing, PANG Ruoming, LE O V. EfficientDet: scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA, 2020: 10778-10787.
[15] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[16] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017: 2999-3007.
[17] DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain, 2016: 379-387.
[18] CAO Zhe, HIDALGO G, SIMON T, et al. OpenPose: realtime multi-person 2D pose estimation using part affinity fields[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(1): 172-186.
[19] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916.
[20] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 8759-8768.
[21] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 936-944.
[22] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA, 2019: 658-666.
[23] YUN S, HAN D, CHUN S, et al. Cutmix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South), 2019: 6022-6031.
[24] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, USA, 2020: 1571-1580.
[25] 赵传君, 王素格, 李德玉. 跨领域文本情感分类研究进展[J]. 软件学报, 2020, 31(6): 1723-1746
ZHAO Chuanjun, WANG Suge, LI Deyu. Research progress on cross-domain text sentiment classification[J]. Journal of software, 2020, 31(6): 1723-1746
[26] 王岩. 深度神经网络的归一化技术研究[D]. 南京: 南京邮电大学, 2019: 1179-1185.
WANG Yan. Analysis of normalization for deep neural networks[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019: 1179-1185.
[27] ZHANG Shuang, SONG Zongxi. An ethnic costumes classification model with optimized learning rate[C]//The 11th International Conference on Digital Image Processing. Guangzhou, China, 2019: 1179-1185.
Similar References:

Memo

-

Last Update: 2021-12-25

Copyright © CAAI Transactions on Intelligent Systems