[1]JIANG Yi,LYU Rongzhen,LIU Mingzhu,et al.Masked face image synthesis based on a generative adversarial network[J].CAAI Transactions on Intelligent Systems,2021,16(6):1073-1080.[doi:10.11992/tis.202012010]
Copy

Masked face image synthesis based on a generative adversarial network

References:
[1] 国家卫生健康委员会.新型冠状病毒肺炎诊疗方案(试行第八版)[EB/OL].(2020-08-18)[2020-12-08]http://www.gov.cn/zhengce/zhengceku/2020-08/19/content_5535757.htm.
National Health Commission of the People’s Republic of China. Diagnosis and treatment protocol for novel coronavirus pneumonia (trial version 8) [EB/OL].(2020-08-18)[2020-12-01]http://www.gov.cn/zhengce/zhengceku/2020-08/19/content_5535757.htm.
[2] TAIGMAN Y, YANG Ming, RANZATO M A, et al. DeepFace: closing the gap to human-level performance in face verification[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 1701-1708.
[3] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 815-823.
[4] 李小薪, 梁荣华. 有遮挡人脸识别综述: 从子空间回归到深度学习[J]. 计算机学报, 2018, 41(1): 177-207
LI Xiaoxin, LIANG Ronghua. A review for face recognition with occlusion: from subspace regression to deep learning[J]. Chinese journal of computers, 2018, 41(1): 177-207
[5] ANWAR A, RAYCHOWDHURY A. Masked face recognition for secure authentication[EB/OL].(2020-08-25)[2020-12-01] https://arxiv.org/abs/2008.11104.
[6] CABANI A, HAMMOUNDI K, BENHABILES H, et al. Masked-Face-Net—a dataset of correctly/incorrectly masked face images in the context of covid-19[EB/OL].(2020-08-18)[2020-12-01] https://arxiv.org/abs/2008.08016.
[7] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014: 2672-2680.
[8] 胡铭菲,刘建伟,左信.深度生成模型综述[EB/OL].(2021-10-28)[2021-10-30] https://doi.org/10.16383/j.aas.c190866.
HU Mingfei, LIU Jianwei, ZUO Xin. Survey on deep generative model[EB/OL].(2021-10-28)[2021-10-30] https://doi.org/10.16383/j.aas.c190866.
[9] MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL].(2014-11-06)[2020-12-01]https://arxiv.org/abs/1411.1784.
[10] RADFORD A, METZ L, CHINTALA S. Unsupervised repress-enttation learning with deep convolutional generative adversarial networks[EB/OL]. (2016-01-07)[2020-12-01] https://arxiv.org/abs/1511.06434.
[11] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN [EB/OL].(2017-12-06)[2020-12-01] https://arxiv.org/abs/1701.07875.
[12] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA, 2017: 5769-5779.
[13] WU Jiqing, HUANG Zhiwu, THOMA J, et al. Wasserstein divergence for GANs[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany, 2018: 673-688.
[14] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada, 2015: 2017-2025.
[15] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 1-9.
[16] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251
ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of convolutional neural network[J]. Chinese journal of computers, 2017, 40(6): 1229-1251
[17] DUTA I C, LIU L, ZHU F, et al. Pyramidal convolutio-n: rethinking convolutional neural networks for vis-ual recognition[EB/OL].(2020-06-20)[2020-12-01]https://arxiv.org/abs/2006.11538.
[18] ARJOVSKY M, BOTTOU L. Towards principled methods for training generative adversarial networks[EB/OL]. (2017-01-17)[2020-12-01] https://arxiv.org/abs/1701.04862.
[19] MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for generative adversarial networks[C]//6th International Conference on Learning Representations. Vancouver, Canada, 2018.
[20] WANG Z, WANG G, HUANG B, et al. Masked face re-cognition dataset and application[EB/OL].(2020-03-23)[2020-12-01] https://arxiv.org/abs/2003.09093.
[21] LIU Ziwei, LUO Ping, WANG Xiaogang, et al. Deep learning face attributes in the wild[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 3730-3738.
[22] HAN Xintong, WU Zuxuan, WU Zhe, et al. VITON: an image-based virtual try-on network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 7543-7552.
[23] HAN Xintong, WU Zuxuan, HUANG Weilin, et al. Compatible and diverse fashion image inpainting[EB/OL]. (2019-04-24)[2020-12-01] https://arxiv.org/abs/1902.01096.
[24] PANDEY N, SAVAKIS A. Poly-GAN: multi-conditioned GAN for fashion synthesis[J]. Neurocomputing, 2020, 414: 356-364.
[25] DONG Haoye, LIANG Xiaodan, SHEN Xiaohui, et al. Towards multi-pose guided virtual try-on network[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South), 2019: 9025-9034.
Similar References:

Memo

-

Last Update: 2021-12-25

Copyright © CAAI Transactions on Intelligent Systems