[1]TANG Liying,HE Lile,HE Lin,et al.Diversity measuring method of a convolutional neural network ensemble[J].CAAI Transactions on Intelligent Systems,2021,16(6):1030-1038.[doi:10.11992/tis.202011023]
Copy

Diversity measuring method of a convolutional neural network ensemble

References:
[1] OPITZ D, MACLIN R. Popular ensemble methods: an empirical study[J]. Journal of artificial intelligence research, 1999, 11: 169-198.
[2] ZHOU Zhuhui. Ensemble methods: foundations and algorithms[M]. New York: CRC Press, 2012: 236.
[3] YULE G U. On the association of attributes in statistics: with illustrations from the material of the childhood society, &c[J]. Philosophical transactions of the royal society of London. Series A, 1900, 1900, 194: 257-319.
[4] SKALAK D B. The sources of increased accuracy for two proposed boosting algorithms[C]//Proceedings of American Association for Artificial Intelligence, AAAI-96, Integrating Multiple Learned Models Workshop. Portland, USA, 1996: 1133.
[5] GIACINTO G, ROLI F. Design of effective neural network ensembles for image classification purposes[J]. Image and vision computing, 2001, 19(9/10): 699-707.
[6] KUNCHEVA L I, WHITAKER C J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy[J]. Machine learning, 2003, 51(2): 181-207.
[7] KOHAVI R, WOLPERT D H. Bias plus variance decomposition for zero-one loss functions[C]//Proceedings of the 13th International Conference on Machine Learning. San Francisco, USA, 1996: 275-283.
[8] CONOVER W J. Statistical methods for rates and proportions[J]. Technometrics, 1974, 16(2): 326-327.
[9] SHIPP C A, KUNCHEVA L I. Relationships between combination methods and measures of diversity in combining classifiers[J]. Information fusion, 2002, 3(2): 135-148.
[10] HANSEN L K, SALAMON P. Neural network ensembles[J]. IEEE transactions on pattern analysis and machine intelligence, 2002, 12(10): 993-1001.
[11] CUNNINGHAM P, CARNEY J. Diversity versus quality in classification ensembles based on feature selection[C]//Proceedings of the 11th European Conference on Machine Learning. Catalonia, Spain, 2000: 109-116.
[12] PARTRIDGE D, KRZANOWSKI W. Software diversity: practical statistics for its measurement and exploitation[J]. Information and software technology, 1997, 39(10): 707-717.
[13] 邢红杰, 魏勇乐. 基于相关熵和距离方差的支持向量数据描述选择性集成[J]. 计算机科学, 2016, 43(5): 252-256, 264
XING Hongjie, WEI Yongle. Selective ensemble of SVDDs based on correntropy and distance variance[J]. Computer science, 2016, 43(5): 252-256, 264
[14] 李莉. 基于差异性度量的分类器集成优化方法研究与应用[D]. 大连: 大连海事大学, 2017.
LI Li. Optimization method research and application of multiple classifiers ensemble based on diversity measure[D]. Dalian: Dalian Maritime University, 2017.
[15] 赵军阳, 韩崇昭, 韩德强, 等. 采用互补信息熵的分类器集成差异性度量方法[J]. 西安交通大学学报, 2016, 50(2): 13-19
ZHAO Junyang, Han Chongzhao, Han Deqiang, et al. A novel measure method for diversity of classifier integrations using complement informationentropy[J]. Journal of Xi’an Jiaotong University, 2016, 50(2): 13-19
[16] 周钢, 郭福亮. 基于信息熵的集成学习过程多样性度量研究[J]. 计算机工程与科学, 2019, 41(9): 1700-1707
ZHOU Gang, GUO Fuliang. Process diversity measurement of ensemble learning based on information entropy[J]. Computer engineering and science, 2019, 41(9): 1700-1707
[17] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251
ZHOU Feiyan, JIN Linpeng, DONG Jun. DONG Jun. Review of convolutional neural network[J]. Chinese journal of computers, 2017, 40(6): 1229-1251
[18] FAN Tiegang, ZHU Ying, CHEN Junmin. A new measure of classifier diversity in multiple classifier system[C]//Proceedings of 2008 International Conference on Machine Learning and Cybernetics. Kunming, China, 2008.
[19] 常亮, 邓小明, 周明全, 等. 图像理解中的卷积神经网络[J]. 自动化学报, 2016, 42(9): 1300-1312
CHANG Liang, DENG Xiaoming, ZHOU Mingquan, et al. Convolutional neural networks in image understanding[J]. Acta Automatica Sinica, 2016, 42(9): 1300-1312
[20] KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[J]. Handbook of systemic autoimmune diseases, 2009, 1(4): 7.
[21] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2012.
[22] SINHA N K, GRISCIK M P. A stochastic approximation method[J]. IEEE transactions on systems, man, and cybernetics, 2007, SMC-1(4): 338-344.
[23] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[J]. Journal of machine learning research, 2011, 15: 315-323.
Similar References:

Memo

-

Last Update: 2021-12-25

Copyright © CAAI Transactions on Intelligent Systems