[1]SHA Yun,LI Qifei,GAN Jianwang,et al.Application of PSdropout convolutional neural network in inspection car for hazardous chemicals[J].CAAI Transactions on Intelligent Systems,2020,15(6):1131-1139.[doi:10.11992/tis.202007022]
Copy

Application of PSdropout convolutional neural network in inspection car for hazardous chemicals

References:
[1] 刘学君, 江帆, 戴波, 等. 基于ARM的危化品仓库堆垛安全距离监测装置的研究与开发[J]. 制造业自动化, 2016, 38(4): 11-14, 25
LIU Xuejun, JIANG Fan, DAI Bo, et al. The research and development of stack safe distance monitoring device for the chemicals warehouse based on ARM[J]. Manufacturing automation, 2016, 38(4): 11-14, 25
[2] 李琳. 基于UWB定位的危化品仓库管理的设计和研究[D]. 北京: 北京邮电大学, 2018.
LI Lin. Design and research of hazardous chemicals warehouse management based on UWB positioning[D]. Beijing: Beijing University of Posts and Telecommunications, 2018.
[3] 戴波, 周泽彧, 张岩, 等. 危化品仓储堆垛安全距离监测系统设计[J]. 化工学报, 2019, 70(002): 707-715
DAI Bo, ZHOU Zeyu, ZHANG Yan, et al. Design of safe distance monitoring system for hazardous chemicals storage stack[J]. CIESC Journal, 2019, 70(002): 707-715
[4] 戴波, 吕昕, 刘学君, 等. 基于UWB四参考点矢量补偿的危化品仓储堆垛货物定位方法[J]. 化工学报, 2016, 67(3): 871-877
DAI Bo, Lü Xin, LIU Xuejun, et al. A UWB-based four reference vectors compensation method applied on hazardous chemicals warehouse stacking positioning[J]. CIESC journal, 2016, 67(3): 871-877
[5] DAI Bo, LI Yanfei, REN Haisheng, et al. Research on optimization for safe layout of hazardous chemicals warehouse based on genetic algorithm[J]. IFAC-PapersOnline, 2008, 51(18): 245-250.
[6] SRINIVAS S, BABU R V. Data-free parameter pruning for deep neural networks[C]//Proceedings of British Machine Vision Conference 2015. Swansea, UK, 2015: 1-12.
[7] HAN Song, POOL J, TRAN J, et al. Learning both weights and connections for efficient neural networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Quebec, Canada, 2015: 1135-1143.
[8] CHEN Wenlin, WILSON J, TYREE S, et al. Compressing neural networks with the hashing trick[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille, France, 2015: 2285-2294.
[9] HAN Song, MAO Huizi, DALLY W J. Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding[C]//Proceedings of 2016 International Conference on Learning Representations. San Juan, Pucrto Rico, 2015: 3-7.
[10] MA Rongrong, NIU Lingfeng. A survey of sparse-learning methods for deep neural networks[C]//Proceedings of 2018 IEEE/WIC/ACM International Conference on Web Intelligence. Santiago, Chile, 2018: 647-650.
[11] 李江昀, 赵义凯, 薛卓尔, 等. 深度神经网络模型压缩综述[J]. 工程科学学报, 2019, 41(10): 1229-1239
LI Jiangyun, ZHAO Yikai, XUE Zhuoer, et al. A survey of model compression for deep neural networks[J]. Chinese journal of engineering, 2019, 41(10): 1229-1239
[12] 纪荣嵘, 林绍辉, 晁飞, 等. 深度神经网络压缩与加速综述[J]. 计算机研究与发展, 2018, 55(9): 1871-1888
JI Rongrong, LIN Shaohui, CHAO Fei, et al. Deep neural network compression and acceleration: a review[J]. Journal of computer research and development, 2018, 55(9): 1871-1888
[13] 王晓华, 杨新艳, 焦李成. 基于多尺度几何分析的复杂网络压缩策略[J]. 电子与信息学报, 2009, 31(4): 968-972
WANG Xiaohua, YANG Xinyan, JIAO Licheng. Compression of complex networks based on multiscale geometric analysis[J]. Journal of electronics & information technology, 2009, 31(4): 968-972
[14] YU Jie, TIAN Shen. A review of network compression based on deep network pruning[C]//Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology. Dalian, China, 2019: 324-335.
[15] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012, 3(4): 212?223.
[16] BALDI P, SADOWSKI P. The dropout learning algorithm[J]. Artificial intelligence, 2014, 210: 78-122.
[17] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251
ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of convolutional neural network[J]. Chinese journal of computers, 2017, 40(6): 1229-1251
[18] 李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9): 2508-2515, 2565
LI Yandong, HAO Zongbo, LEI Hang. Survey of convolutional neural network[J]. Journal of computer applications, 2016, 36(9): 2508-2515, 2565
[19] 陈先昌. 基于卷积神经网络的深度学习算法与应用研究[D]. 杭州: 浙江工商大学, 2014.
CHEN Xianchang. Research on algorithm and application of deep learning based on convolutional neural network[D]. Hangzhou: Zhejiang Gongshang University, 2014.
[20] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 580-587.
[21] 刘亦芃. 一种关于深度学习网络结构的改进策略[D]. 长春: 吉林大学, 2019.
LIU Yipeng. A strategy for improving the structure of deep learning network[D]. Changchun: Jilin University, 2019.
[22] 杨国亮, 许楠, 李放, 等. 关于非线性激活函数的深度学习分类方法研究[J]. 江西理工大学学报, 2018, 39(3): 76-83
YANG Guoliang, XU Nan, LI Fang, et al. Research on deep learning classification for nonlinear activation function[J]. Journal of Jiangxi University of Science and Technology, 2018, 39(3): 76-83
[23] 张永雄, 王亮明, 李东. 基于多示例深度学习与损失函数优化的交通标志识别算法[J]. 现代电子技术, 2018, 41(15): 133-136, 140
ZHANG Yongxiong, WANG Liangming, LI Dong. Traffic sign recognition algorithm based on multi-instance deep learning and loss function optimization[J]. Modern electronics technique, 2018, 41(15): 133-136, 140
[24] WAN Li, ZEILER M, ZHANG Sixin, et al. Regularization of neural networks using dropconnect[C]//Proceedings of the 30th International Conference on Machine Learning. Atlanta, GA, USA, 2013: 1058-1066.
[25] 徐玉华, 曾明. 泊松分布性质及应用研究[J]. 长江大学学报(自科版), 2006, 04: 132-133
XU Yuhua, ZENG Ming. Poisson distribution properties and application research[J]. Journal of Yangtze University (Natural Science Edition), 2006, 04: 132-133
Similar References:

Memo

-

Last Update: 2020-12-25

Copyright © CAAI Transactions on Intelligent Systems