[1]LI Linze,ZHANG Tao.Feature detection and recognition of spatial noncooperative objects based on deep learning[J].CAAI Transactions on Intelligent Systems,2020,15(6):1154-1162.[doi:10.11992/tis.202006011]
Copy

Feature detection and recognition of spatial noncooperative objects based on deep learning

References:
[1] PENG Jianqing, XU Wenfu, YUAN Han. An efficient pose measurement method of a space non-cooperative target based on stereo vision[J]. IEEE access, 2017, 5: 22344-22362.
[2] 梁斌, 杜晓东, 李成, 等. 空间机器人非合作航天器在轨服务研究进展[J]. 机器人, 2012, 34(2): 242-256
LIANG Bin, DU Xiaodong, LI Cheng, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2): 242-256
[3] 郝颖明, 付双飞, 范晓鹏, 等. 面向空间机械臂在轨服务操作的视觉感知技术[J]. 无人系统技术, 2018, 1(1): 54-65
HAO Yingming, FU Shuangfei, FAN Xiaopeng, et al. Vision perception technology for space manipulator on-orbit service operations[J]. Unmanned systems technology, 2018, 1(1): 54-65
[4] WANG Ning, YANG Chenguang, LYU M R, et al. An EMG enhanced impedance and force control framework for telerobot operation in space[C]//Proceedings of 2014 IEEE Aerospace Conference. Big Sky, MT, USA, 2014: 1-10.
[5] ITOH T, YUDATE K, ITO S, et al. New predictive display method of motion and force information for network teleoperation without using virtual environment model[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003). Las Vegas, NV, USA, 2003: 2815-2822.
[6] SAHBANI A, El-KHOURY S, BIDAUD P. An overview of 3D object grasp synthesis algorithms[J]. Robotics and autonomous systems, 2012, 60(3): 326-336.
[7] KAMON I, FLASH T, EDELMAN S. Learning to grasp using visual information[C]//Proceedings of IEEE International Conference on Robotics and Automation. Minneapolis, USA, 1996: 2470-2476.
[8] MORALES A, CHINELLATO E, FAGG A H, et al. Using experience for assessing grasp reliability[J]. International journal of humanoid robotics, 2004, 1(4): 671-691.
[9] HERZOG A, PASTOR P, KALAKRISHNAN M, et al. Template-based learning of grasp selection[C]//Proceedings of 2012 IEEE International Conference on Robotics and Automation. Saint Paul, USA, 2012: 2379-2384.
[10] KROEMER O, UGUR E, OZTOP E, et al. A kernel-based approach to direct action perception[C]//Proceedings of 2012 IEEE International Conference on Robotics and Automation. Saint Paul, USA, 2012: 2605-2610.
[11] BOHG J, MORALES A, ASFOUR T, et al. Data-driven grasp synthesis—a survey[J]. IEEE transactions on robotics, 2014, 30(2): 289-309.
[12] EL-KHOURY S, SAHBANI A. Handling objects by their handles[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France, 2008: 58-64.
[13] PELOSSOF R, MILLER A, ALLEN P, et al. An SVM learning approach to robotic grasping[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation. New Orleans, USA, 2004: 3512-3518.
[14] BOULARIAS A, KROEMER O, PETERS J. Learning robot grasping from 3-D images with Markov Random Fields[C]//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, USA, 2011: 1548-1553.
[15] SAXENA A, DRIEMEYER J, NG A Y. Robotic grasping of novel objects using vision[J]. The international journal of robotics research, 2008, 27(2): 157-173.
[16] HE Kaiming, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy, 2017: 2980-2988.
[17] GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(1): 142-158.
[18] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 1440-1448.
[19] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[20] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA, 2016: 779-788.
[21] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]//Proceedings of the 14th European Conference Computer Vision. Amsterdam, The Netherlands, 2016: 21-37.
[22] ARBELáEZ P, PONT-TUSET J, BARRON J, et al. Multiscale combinatorial grouping[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 328?335.
[23] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International journal of computer vision, 2013, 104(2): 154-171.
[24] DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain, 2016: 379-387.
[25] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA, 2017: 936-944.
[26] LI Zeming, PENG Chao, YU Gang, et al. Light-Head R-CNN: in defense of two-stage object detector[DB/OL]//https://arxiv.org/abs/1711.07264, 2017-11-20/2017-11-23.
Similar References:

Memo

-

Last Update: 2020-12-25

Copyright © CAAI Transactions on Intelligent Systems