[1]HONG Kailin,CAO Jiangtao,JI Xiaofei.Indoor window detection of autonomous spraying robot based on improved CenterNet network[J].CAAI Transactions on Intelligent Systems,2021,16(3):425-432.[doi:10.11992/tis.202005016]
Copy

Indoor window detection of autonomous spraying robot based on improved CenterNet network

References:
[1] 沈乐, 李桂清, 冼楚华, 等. 室内3D点云模型的门窗检测[J]. 计算机辅助设计与图形学学报, 2019, 31(9):1494-1501
SHEN Le, LI Guiqing, XIAN Chuhua, et al. Door and window detection in 3D point cloud of indoor scenes[J]. Journal of computer-aided design & computer graphics, 2019, 31(9):1494-1501
[2] ALI H, SEIFERT C, JINDAL N, et al. Window detection in facades[C]//14th International Conference on Image Analysis and Processing (ICIAP 2007). Modena, Italy, 2007:837-842.
[3] 孔倩倩, 赵辽英, 张莉. 基于图像轮廓分析的室内窗户检测[J]. 计算机与现代化, 2018(4):56-61
KONG Qianqian, ZHAO Liaoying, ZHANG Li. Indoor window detection based on image contour analysis[J]. Computer and modernization, 2018(4):56-61
[4] 缪君, 储珺, 张桂梅. 基于图像边缘与玻璃属性约束的窗户检测[J]. 图学学报, 2015, 36(5):776-782
MIAO Jun, CHU Jun, ZHANG Guimei. Window detection based on constraints of image edges and glass attributes[J]. Journal of graphics, 2015, 36(5):776-782
[5] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015:1440-1448.
[6] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6):1137-1149.
[7] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9):1904-1916.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:779-788.
[9] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD:single shot MultiBox detector[C]//14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016:21-37.
[10] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy, 2017:2999-3007.
[11] ZHU Chenchen, HE Yihui, SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA, 2019:840-849.
[12] LAW H, DENG Jia. CornerNet:detecting objects as paired keypoints[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany, 2018:765-781.
[13] ZHANG Shifeng, CHI Cheng, YAO Yongqiang, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA, 2020:9756-9765.
[14] DUAN Kaiwen, BAI Song, XIE Lingxi, et al. CenterNet:keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South), 2019:6568-6577.
[15] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS:fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South), 2019:9626-9635.
[16] HAN Kai, WANG Yunhe, TIAN Qi, et al. GhostNet:more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA, 2020:1577-1586.
[17] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:7132-7141.
[18] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:770-778.
[19] NEWELL A, YANG Kaiyu, DENG Jia. Stacked hourglass networks for human pose estimation[C]//14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016:483-499.
[20] YU F, WANG Dequan, SHELHAMER E, et al. Deep layer aggregation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:2403-2412.
[21] HUANG Gao, LIU Shichen, VAN DER MAATEN L, et al. CondenseNet:an efficient DenseNet using learned group convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:2752-2761.
[22] PAN Junting, SAYROL E, GIRO-I-NIETO X, et al. Shallow and deep convolutional networks for saliency prediction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:598-606.
[23] ZHU Xizhou, HU Han, LIN S, et al. Deformable ConvNets V2:more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA, 2019:9300-9308.
[24] SHENG Tao, FENG Chen, ZHUO Shaojie, et al. A quantization-friendly separable convolution for mobilenets[C]//2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2). Williamsburg, USA, 2018:14-18.
[25] ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. Shufflenet:an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018:6848-6856.
[26] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:1800-1807.
Similar References:

Memo

-

Last Update: 2021-06-25

Copyright © CAAI Transactions on Intelligent Systems