[1]XU Guoliang,ZHOU Hang,YUAN Liangyou.Human “ghost” suppression algorithm using Gaussian mixture model and topology[J].CAAI Transactions on Intelligent Systems,2021,16(2):294-302.[doi:10.11992/tis.201912030]
Copy

Human “ghost” suppression algorithm using Gaussian mixture model and topology

References:
[1] 昝孟恩, 周航, 韩丹, 等. 粒子滤波目标跟踪算法综述[J]. 计算机工程与应用, 2019, 55(5):8-17
ZAN Mengen, ZHOU Hang, HAN Dan, et al. Survey of particle filter target tracking algorithms[J]. Computer engineering and applications, 2019, 55(5):8-17
[2] 李明杰, 刘小飞, 张福泉, 等. 基于粒子滤波和背景减除的多目标检测与跟踪算法[J]. 计算机应用研究, 2018, 35(8):2506-2509
LI Mingjie, LIU Xiaofei, ZHANG Fuquan, et al. Multi target detection and tracking algorithm based on particle filtering and background subtraction[J]. Application research of computers, 2018, 35(8):2506-2509
[3] 杜鹃, 吴芬芬. 高斯混合模型的运动目标检测与跟踪算法[J]. 南京理工大学学报, 2017, 41(1):41-46
DU Juan, WU Fenfen. Movement target tracking algorithm by using Gaussian mixture model[J]. Journal of Nanjing University of Science and Technology, 2017, 41(1):41-46
[4] 陈聪, 杨忠, 宋佳蓉, 等. 一种改进的卷积神经网络行人识别方法[J]. 应用科技, 2019, 46(3):51-57
CHEN Cong, YANG Zhong, SONG Jiarong, at al. An improved pedestrian detection method based on convolutional neural network[J]. Applied science and technology, 2019, 46(3):51-57
[5] 丁哲, 陆文总. 基于Vibe背景建模的运动目标检测算法[J]. 计算机系统应用, 2019, 28(4):187-191
DING Zhe, LU Wenzong. Moving target detection algorithm based on vibe background modeling[J]. Computer systems & applications, 2019, 28(4):187-191
[6] 左军辉, 贾振红, 杨杰. 基于改进背景减法的视频图像运动目标检测[J]. 计算机工程与设计, 2020, 44(5):1367-1372
ZUO Junhui, JIA Zhenhong, YANG Jie. Moving object detection in video image based on improved background subtraction[J]. Computer engineering and design, 2020, 44(5):1367-1372
[7] YANG Dan, ZHAO Chenqiu, ZHANG Xiaohong, at al. Background modeling by stability of adaptive features in complex scenes[J]. IEEE transactions on image processing, 2018, 27(3):1112-1125.
[8] MOUDGOLLYA R, MIDYA A, SUNANIYA A K, et al. Dynamic background modeling using intensity and orientation distribution of video sequence[J]. Multimedia tools and applications, 2019, 78(4):22537-22554.
[9] ZHOU Anran, XIE Weixin, PEI Jihong. Background modeling in the Fourier domain for maritime infrared target detection[J]. IEEE transactions on circuits and systems for video technology, 2020, 30(8):2634-2649.
[10] HUYNH-THE T, HUA C H, TU N A, et al. Locally statistical dual-mode background subtraction approach[J]. IEEE access, 2019, 7:9769-9782.
[11] DEWAN P, KUMAR R. Detection of object in motion using improvised background subtraction algorithm[C]//Proceedings of 2017 International Conference on Trends in Electronics and Informatics. Tirunelveli, India, 2017:651-656.
[12] 刘晓芳, 周航, 韩权, 等. 基于视觉的步态识别研究综述[J]. 小型微型计算机系统, 2018, 39(8):1685-1692
LIU Xiaofang, ZHOU Hang, HAN Quan, et al. Survey of vision-based gait recognition[J]. Journal of Chinese computer systems, 2018, 39(8):1685-1692
[13] 刘相锋, 周航. 步态识别技术及其在视频监控中的应用[J]. 电视技术, 2011, 35(1):119-121
LIU Xiangfeng, ZHOU Hang. Gait recognition technology and application in video surveillance[J]. Video engineering, 2011, 35(1):119-121
[14] 金静, 党建武, 王阳萍, 等. 一种基于鲁棒局部纹理特征的背景差分方法[J]. 计算机工程与科学, 2017, 39(8):1513-1519
JIN Jing, DANG Jianwu, WANG Yangping, et al. A background subtraction method based on robust local texture features[J]. Computer engineering & science, 2017, 39(8):1513-1519
[15] 孙挺, 齐迎春, 耿国华. 基于帧间差分和背景差分的运动目标检测算法[J]. 吉林大学学报(工学版), 2016, 46(4):1325-1329
SUN Ting, QI Yingchun, GENG Guohua. Moving object detection algorithm based on frame difference and background subtraction[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(4):1325-1329
[16] SHAHBAZ A, KURNIANGGORO L, WAHYONO, et al. Recent advances in the field of foreground detection:an overview[M]//KRóL D, NGUYEN N T, SHIRAI K. Advanced Topics in Intelligent Information and Database Systems. Cham:Springer, 2017:261-269.
[17] WREN C R, AZARBAYEJANI A, DARRELL T, et al. Pfinder:real-time tracking of the human body[J]. IEEE transactions on pattern analysis and machine intelligence, 1997, 19(7):780-785.
[18] YONG Hongwei, MENG Deyu, ZUO Wangmeng, et al. Robust online matrix factorization for dynamic background subtraction[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(7):1726-1740.
[19] STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[C]//Proceedings of 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, USA, 1999:246-252.
[20] ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction[C]//Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK, 2004:28-31.
[21] KIM K, CHALIDABHONGSE T H, HARWOOD D, et al. Real-time foreground-background segmentation using codebook model[J]. Real-time imaging, 2005, 11(3):172-185.
[22] BARNICH O, VAN DROOGENBROECK M. ViBE:A powerful random technique to estimate the background in video sequences[C]//2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, China, 2009:945-948.
[23] BARNICH O, VAN DROOGENBROECK M. ViBe:a universal background subtraction algorithm for video sequences[J]. IEEE transactions on image processing, 2011, 20(6):1709-1724.
[24] 杨丹, 戴芳. 运动目标检测的ViBe算法改进[J]. 中国图象图形学报, 2018, 23(12):1813-1828
YANG Dan, DAI Fang. Improved ViBe algorithm for detection of moving objects[J]. Journal of image and graphics, 2018, 23(12):1813-1828
[25] LIU Shanyi. An improved ViBe moving object detection algorithm based on spatial-temporal gradient of image[C]//Proceedings of 2016 International Conference on Progress in Informatics and Computing. Shanghai, China, 2016:192-197.
[26] MIN Weidong, FAN Mengdan, GUO Xiaoguang, et al. A new approach to track multiple vehicles with the combination of robust detection and two classifiers[J]. IEEE transactions on intelligent transportation systems, 2018, 19(1):174-186.
[27] ST-CHARLES P L, BILODEAU G A, BERGEVIN R. SuBSENSE:a universal change detection method with local adaptive sensitivity[J]. IEEE transactions on image processing, 2015, 24(1):359-373.
[28] ST-CHARLES P L, BILODEAU G A, BERGEVIN R. Universal background subtraction using word consensus models[J]. IEEE transactions on image processing, 2016, 25(10):4768-4781.
[29] 朱海滨. 网络拓扑发现技术探析[J]. 网络安全技术与应用, 2017(3):26-27
ZHU Haibin. Analysis of network topology discovery technology[J]. Network security technology & application, 2017(3):26-27
Similar References:

Memo

-

Last Update: 2021-04-25

Copyright © CAAI Transactions on Intelligent Systems