[1]CHEN Lichao,XIE Dan,CAO Jianfang,et al.Research on vehicle real-time detection algorithm based on improved optical flow method and GMM[J].CAAI Transactions on Intelligent Systems,2021,16(2):271-278.[doi:10.11992/tis.201907051]
Copy

Research on vehicle real-time detection algorithm based on improved optical flow method and GMM

References:
[1] 徐子豪, 黄伟泉, 王胤. 基于深度学习的监控视频中多类别车辆检测[J]. 计算机应用, 2019, 39(3):700-705
XU Zihao, HUANG Weiquan, WANG Yin. Multi-class vehicle detection in surveillance video based on deep learning[J]. Journal of computer application, 2019, 39(3):700-705
[2] WULFF J, SEVILLA-LARA L, BLACK M J. Optical flow in mostly rigid scenes[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:6911?6920.
[3] 于晓明, 李思颖, 史胜楠. 混合高斯融合三帧差的运动目标检测改进算法[J]. 红外技术, 2019, 41(3):256-261
YU Xiaoming, LI Siying, SHI Shengnan. An improved algorithm for moving target detection using a Gaussian mixture with three-frame difference[J]. Infrared technology, 2019, 41(3):256-261
[4] 范文超, 李晓宇, 魏凯, 等. 基于改进的高斯混合模型的运动目标检测[J]. 计算机科学, 2015, 42(5):286-288, 319
FAN Wenchao, LI Xiaoyu, WEI Kai, et al. Moving target detection based on improved Gaussian mixture model[J]. Computer science, 2015, 42(5):286-288, 319
[5] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015:1440?1448.
[6] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6):1137-1149.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:779?788.
[8] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:6517?6525.
[9] SENGAR S S, MUKHOPADHYAY S. Motion detection using block based bi-directional optical flow method[J]. Journal of visual communication and image representation, 2017, 49:89-103.
[10] PAN Chengyi, ZHU Zhou, JIANG Liangwei, et al. Adaptive ViBe background model for vehicle detection[C]//Proceedings of the 2nd Advanced Information Technology, Electronic and Automation Control Conference. Chongqing, China, 2017:1301?1305.
[11] HORN B K P, SCHUNCK B G. Determining optical flow[J]. Artificial intelligence, 1980, 17(1/2/3):185-203.
[12] LIU Xiong, PAN Li, SUN Xiaoliang. Real-time traffic status classification based on Gaussian mixture model[C]//Proceedings of IEEE 1st International Conference on Data Science in Cyberspace. Changsha, China, 2016:573?578.
[13] 魏超, 贺光辉. 基于直方图的白平衡算法的研究[J]. 微电子学与计算机, 2018, 35(6):75-78
WEI Chao, HE Guanghui. Automatic white balance algorithm based on histogram[J]. Microelectronics & computer, 2018, 35(6):75-78
[14] WANG Yi, JODOIN P M, PORIKLI F, et al. CDnet 2014:an expanded change detection benchmark dataset[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:393?400.
[15] YANG Honghong, QU Shiru. Real-time vehicle detection and counting in complex traffic scenes using background subtraction model with low-rank decomposition[J]. IET intelligent transport systems, 2018, 12(1):75-85.
[16] STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[C]//Proceedings of 1999 IEEE Conference on Computer Vision and Pattern Recognition. Fort Collins, USA, 1999:246?252.
[17] RODRIGUEZ P, WOHLBERG B. Incremental principal component pursuit for video background modeling[J]. Journal of mathematical imaging and vision, 2016, 55(1):1-18.
[18] SHAKERI M, ZHANG Hong. COROLA:a sequential solution to moving object detection using low-rank approximation[J]. Computer vision and image understanding, 2016, 146:27-39.
Similar References:

Memo

-

Last Update: 2021-04-25

Copyright © CAAI Transactions on Intelligent Systems