[1]YI Chunzhi,GUO Hao,DING Zhen,et al.Research progress of lower-limb exoskeleton and joint kinematics calculation[J].CAAI Transactions on Intelligent Systems,2018,13(6):878-888.[doi:10.11992/tis.201804063]
Copy

Research progress of lower-limb exoskeleton and joint kinematics calculation

References:
[1] HEINLEIN R A. Starship troopers[M]. New York:Putnam, 1959.
[2] DICK J G, EDWARDS E A. Human bipedal locomotion device[P]. US:5016869, 1991-05-21.
[3] LUNENBURGER L, COLOMBO G, RIENER R, et al. Clinical assessments performed during robotic rehabilitation by the gait training robot Lokomat[C]//Proceedings of the 9th International Conference on Rehabilitation Robotics. Chicago, IL, USA, 2005:345-348.
[4] INMAN V T, RALSTON H J, TODD F. Human walking[M]. Baltimore:Waverly Press, 1981.
[5] POPOVIC M B, GOSWAMI A, HERR H M. Ground reference points in legged locomotion:definitions, biological trajectories and control implications[J]. The international journal of robotics research, 2005, 24(12):1013-1032.
[6] VAN DEN BOGERT A J. Exotendons for assistance of human locomotion[J]. Biomedical engineering online, 2003, 2:17.
[7] WINTER D A. International society of biomechanics, biomechanical data resources, gait data[Z]. (2002-11-24). http://www.isbweb.org/data/. 2018.
[8] BROCKWAY J M. Derivation of formulae used to calculate energy expenditure in man[J]. Human nutrition. Clinical nutrition, 1987, 41(6):463-471.
[9] DONELAN J M, KRAM R, KUO A D. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking[J]. Journal of experimental biology, 2002, 205(23):3717-3727.
[10] GARCIA E, SATER J M, MAIN J. Exoskeletons for human performance augmentation (EHPA):a program summary[J]. Journal of the robotics society of Japan, 2002, 20(8):822-826.
[11] KAZEROONI H. The Berkeley lower extremity exoskeleton[M]//CORKE P, SUKKARIAH S. Field and Service Robotics:Results of the 5th International Conference. Berlin, Heidelberg, Germany2006:9-15.
[12] ZOSS A B, KAZEROONI H, CHU A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX)[J]. IEEE/ASME transactions on mechatronics, 2006, 11(2):128-138.
[13] AMUNDSON K, RAADE J, HARDING N, et al. Hybrid hydraulic-electric power unit for field and service robots[C]//Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Alta., Canada, 2005:53-3458.
[14] CHU A, KAZEROONI H, ZOSS A. On the biomimetic design of the Berkeley lower extremity exoskeleton (BLEEX)[C]//Proceedings of 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005:4345-4352.
[15] ZOSS A, KAZEROONI H. Design of an electrically actuated lower extremity exoskeleton[J]. Advanced robotics, 2006, 20(9):967-988.
[16] GUIZZO E, GOLDSTEIN H. The rise of the body bots[robotic exoskeletons] [J]. IEEE spectrum, 2005, 42(10):50-56.
[17] U.S. Army Research Laboratory. 2006 ARO in review[Z]. Adelphi, MD:U.S. Army Research Office, 2006.
[18] WALSH C J, PASCH K, HERR H. An autonomous, underactuated exoskeleton for load-carrying augmentation[C]//Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2007:1410-1415.
[19] WALSH C J, PALUSKA D, PASCH K, et al. Development of a lightweight, underactuated exoskeleton for load-carrying augmentation[C]//Proceedings of 2006 IEEE International Conference on Robotics and Automation. Orlando, FL, USA, 2006:3485-3491.
[20] VALIENTE A. Design of a quasi-passive parallel leg exoskeleton to augment load carrying for walking[D]. Massachusetts:Massachusetts Institute of Technology, 2005.
[21] GOGOLA M, BARTH E J, GOLDFARB M. Monopropellant powered actuators for use in autonomous human-scaled robotics[C]//Proceedings of 2002 IEEE International Conference on Robotics and Automation. Washington, DC, USA, 2002:2357-2362.
[22] KAWAMOTO H, SANKAI Y. Power assist system HAL-3 for gait disorder person[C]//Proceedings of the 8th International Conference on Computers Helping People with Special Needs Handicapped Persons. Berlin, Heidelberg, 2002:196-203.
[23] WALSH C J. Biomimetic design of an under-actuated leg exoskeleton for load-carrying augmentation[D]. Massachusetts:Massachusetts Institute of Technology, 2006.
[24] KAWAMOTO H, LEE S, KANBE S, et al. Power assist method for HAL-3 using EMG-based feedback controller[C]//Proceedings of 2003 International Conference on Systems, Man and Cybernetics. Conference Theme-System Security and Assurance. Washington, DC, USA, 2003:1648-1653.
[25] YAMAMOTO K, HYODO K, ISHⅡ M, et al. Development of power assisting suit for assisting nurse labor[J]. JSME international journal series C, 2002, 45(3):703-711.
[26] YAMAMOTO K, ISHⅡ M, HYODO K, et al. Development of power assisting suit (Miniaturization of Supply System to Realize Wearable Suit)[J]. JSME international journal series C, 2003, 46(3):923-930.
[27] FONTANA M, VERTECHY R, MARCHESCHI S, et al. The body extender:a full-body exoskeleton for the transport and handling of heavy loads[J]. IEEE robotics & automation magazine, 2014, 21(4):34-44.
[28] LUCCHESI N, MARCHESCHI S, BORELLI L, et al. An approach to the design of fully actuated body extenders for material handling[C]//Proceedings of the 19th International Symposium in Robot and Human Interactive Communication. Viareggio, Italy, 2010:482-487.
[29] MARCHESCHI S, SALSEDO F, FONTANA M, et al. Body extender:whole body exoskeleton for human power augmentation[C]//Proceedings of 2011 IEEE International Conference on Robotics and Automation. Shanghai, China, 2011:611-616.
[30] LIU Xiaopeng, LOW K H, YU Haoyong. Development of a lower extremity exoskeleton for human performance enhancement[C]//Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan, 2005:3889-3894.
[31] LOW K H, LIU Xiaopeng, YU Haoyong. Development of NTU wearable exoskeleton system for assistive technologies[C]//Proceedings of 2005 IEEE International Conference Mechatronics and Automation. Niagara Falls, Ont., Canada, 2005:1099-1106.
[32] ONISHI T, ARAI T, INOUE K, et al. Development of the basic structure for an exoskeleton cyborg system[J]. Artificial life and robotics, 2003, 7(3):95-101.
[33] 法国RB3D公司. http://www.rb3d.com/en/[Z]. 2018
[34] KOSSO E V. A minimum energy exoskeleton[C]//Proceedings of Carnahan Conference on Electronic Prosthetics. Carnahan, UK, 1973:86-89.
[35] PRATT J E, KRUPP B T, MORSE C J, et al. The RoboKnee:an exoskeleton for enhancing strength and endurance during walking[C]//Proceedings of 2004 IEEE International Conference on Robotics and Automation. New Orleans, LA, USA, 2004:2430-2435.
[36] PIETRO F. Device for the automatic control of the articulation of the knee applicable to a prothesis of the thigh[P]. US:2305291, 1942-12-15.
[37] WALSH C J, ENDO K, HERR H. A quasi-passive leg exoskeleton for load-carrying augmentation[J]. International journal of humanoid robotics, 2007, 4(3):487-506.
[38] GREGORCZYK K N, OBUSEK J P, HASSELQUIST L, et al. The effects of a lower body exoskeleton load carriage assistive device on oxygen consumption and kinematics during walking with loads[J]. 2006.
[39] JANSEN J F, BIRDWELL J F, BOYNTON A C, et al. Phase I report DARPA Exoskeleton Program[Z]. 2003.
[40] COLLINS S H, WIGGIN M B, SAWICKI G S. Reducing the energy cost of human walking using an unpowered exoskeleton[J]. Nature, 2015, 522(7555):212-215.
[41] GRIMMER M, ESLAMY M, GLIECH S, et al. A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running[C]//Proceedings of 2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA, 2012:2463-2470.
[42] VUKOBRATOVIC M, BOROVA B, SURLA D, et al. Scientific fundamentals of robotics 7:biped locomotion, dynamics, stability, control and application[M]. New York:Springer Verlag, 1990.
[43] STRAUSSER K A, KAZEROONI H. The development and testing of a human machine interface for a mobile medical exoskeleton[C]//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, CA, USA, 2011:4911-4916.
[44] BANALA S K, AGRAWAL S K, FATTAH A, et al. Gravity-balancing leg orthosis and its performance evaluation[J]. IEEE transactions on robotics, 2006, 22(6):1228-1239.
[45] KONG K, JEON D. Design and control of an exoskeleton for the elderly and patients[J]. IEEE/ASME transactions on mechatronics, 2006, 11(4):428-432.
[46] MORI Y, TAKAYAMA K, NAKAMURA T. Development of straight style transfer equipment for lower limbs disabled[C]//Proceedings of 2004 IEEE International Conference on Robotics and Automation. New Orleans, LA, USA, 2004:2486-2491.
[47] HARTIGAN C, KANDILAKIS C, DALLEY S, et al. Mobility outcomes following five training sessions with a powered exoskeleton[J]. Topics in spinal cord injury rehabilitation, 2015, 21(2):93-99.
[48] QUINTERO H A, FARRIS R J, HARTIGAN C, et al. A powered lower limb orthosis for providing legged mobility in paraplegic individuals[J]. Topics in spinal cord injury rehabilitation, 2011, 17(1):25-33.
[49] SEEL T, SCHAUER T, RAISCH J. Joint axis and position estimation from inertial measurement data by exploiting kinematic constraints[C]//Proceedings of 2012 IEEE International Conference on Control Applications. Dubrovnik, Croatia, 2012:45-49.
[50] LAIDIG D, MüLLER P, SEEL T. Automatic anatomical calibration for IMU-based elbow angle measurement in disturbed magnetic fields[J]. Current directions in biomedical engineering, 2017, 3(2):167-170.
[51] DEL-AMA A J, MORENO J C, GIL-AGUDO à, et al. Online assessment of human-robot interaction for hybrid control of walking[J]. Sensors, 2012, 12(1):215-225.
[52] DEL-AMA A J, GIL-AGUDO á, PONS J L, et al. Hybrid gait training with an overground robot for people with incomplete spinal cord injury:a pilot study[J]. Forntiers in human neuroscience, 2014, 8:298.
[53] HOLLANDER K W, ILG R, SUGAR T G, et al. An efficient robotic tendon for gait assistance[J]. Journal of biomechanical engineering, 2006, 128(5):788-791.
[54] BHARADWAJ K, SUGAR T G, KOENEMAN J B, et al. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation[J]. Journal of biomechanical engineering, 2005, 127(6):1009-1013.
[55] AGRAWAL A, BANALA S K, AGRAWAL S K, et al. Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation[C]//Proceedings of the 9th International Conference on Rehabilitation Robotics. Chicago, IL, USA, 2005:41-44.
[56] NIKITCZUK J, WEINBERG B, MAVROIDIS C. RehAbilitative knee orthosis driven by electro-rheological fluid based actuators[C]//Proceedings of 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005:2283-2289.
[57] FLEISCHER C, HOMMEL G. Embedded control system for a powered leg exoskeleton[M]//HOMMEL G, HUANYE S. Embedded Systems-Modeling, Technology, and Applications. Dordrecht:Springer, 2006:177-185.
[58] KAWASHIMA N, SONE Y, NAKAZAWA K, et al. Energy expenditure during walking with weight-bearing control (WBC) orthosis in thoracic level of paraplegic patients[J]. Spinal cord, 2003, 41(9):506-510.
[59] BELFORTE G, GASTALDI L, SORLI M. Pneumatic active gait orthosis[J]. Mechatronics, 2001, 11(3):301-323.
[60] GRIFFIN T M, ROBERTS T J, KRAM R. Metabolic cost of generating muscular force in human walking:insights from load-carrying and speed experiments[J]. Journal of applied physiology, 2003, 95(1):172-183.
[61] CROWELL Ⅲ H, BOYNTON A C, MUNGIOLE M. Exoskeleton power and torque requirements based on human biomechanics[J]. Exoskeleton Power & Torque Requirements Based on Human Biomechanics, 2002.
[62] BOYNTON A C, CROWELL Ⅲ H P. A human factors evaluation of exoskeleton boot interface sole thickness[J]. A Human Factors Evaluation of Exoskeleton Boot Interface Sole Thickness, 2006.
[63] HARMAN E, HOON K, FRYKMAN P, et al. The effects of backpack weight on the biomechanics of load carriage[R]. Natick, MA:U.S. Army Research Institute of Environmental Medicine, 2000.
[64] ATTWELLS R L, BIRRELL S A, HOOPER R H, et al. Influence of carrying heavy loads on soldiers’ posture, movements and gait[J]. Ergonomics, 2006, 49(14):1527-1537.
[65] ENDO K, PALUSKA D, HERR H. A quasi-passive model of human leg function in level-ground walking[C]//Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China, 2006:4935-4939.
[66] WEHNER M, QUINLIVAN B, AUBIN P M, et al. A lightweight soft exosuit for gait assistance[C]//Proceedings of 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany, 2013:3362-3369.
[67] ASBECK A T, DE ROSSI S M M, HOLT K G, et al. A biologically inspired soft exosuit for walking assistance[J]. The international journal of robotics research, 2015, 34(6):744-762.
[68] DING Ye, GALIANA I, ASBECK A, et al. Multi-joint actuation platform for lower extremity soft exosuits[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China, 2014:1327-1334.
[69] MIT Technology Review. The exoskeletons are coming[EB/OL]. (2015-07-16). https://www.technologyreview.com/s/539251/the-exoskeletons-are-coming/. 2018.
Similar References:

Memo

-

Last Update: 2018-12-25

Copyright © CAAI Transactions on Intelligent Systems