[1]WU Xiaoyi,WU Xiaojun.A low rank recovery algorithm for face recognition with structured and weighted sparse constraint[J].CAAI Transactions on Intelligent Systems,2019,14(3):455-463.[doi:10.11992/tis.201711026]
Copy

A low rank recovery algorithm for face recognition with structured and weighted sparse constraint

References:
[1] TURK M, PENTLAND A. Eigenfaces for recognition[J]. Journal of cognitive neuroscience, 1991, 3(1):71-86.
[2] BELHUMEUR P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs. fisherfaces:recognition using class specific linear projection[J]. IEEE transactions on pattern analysis and machine intelligence, 997, 19(7):711-720.
[3] LIU Chengjun, WECHSLER H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition[J]. IEEE transactions on image processing, 2002, 11(4):467-476.
[4] HE Xiaofei, YAN Shuicheng, HU Yuxiao, et al. Face recognition using Laplacianfaces[J]. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(3):328-340.
[5] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE transactions on pattern analysis and machine intelligence, 2009, 31(2):210-227.
[6] MIN R, DUGELAY J L. Improved combination of LBP and sparse representation based classification (SRC) for face recognition[C]//Proceedings of 2011 IEEE ICME. Barcelona, Spain, 2011:1-6.
[7] CHEN C F, WEI C P, WANG Y C F. Low-rank matrix recovery with structural incoherence for robust face recognition[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012:2618-2625.
[8] YANG Meng, ZHANG Lei, YANG Jian, et al. Regularized robust coding for face recognition[J]. IEEE transactions on image processing, 2013, 22(5):1753-1766.
[9] ZHANG Lei, YANG Meng, FENG Xiangchu. Sparse representation or collaborative representation:which helps face recognition?[C]//Proceedings of 2011 ICCV. Barcelona, Spain, 2011:471-478.
[10] DENG Weihong, HU Jiani, GUO Jun. Extended SRC:undersampled face recognition via intraclass variant dictionary[J]. IEEE transactions on pattern analysis and machine intelligence, 2012, 34(9):1864-1870.
[11] YANG Meng, ZHU Pengfei, LIU Feng, et al. Joint representation and pattern learning for robust face recognition[J]. Neurocomputing, 2015, 168:70-80.
[12] CANDèS E J, LI Xiaodong, MA Yi, et al. Robust principal component analysis[J]. Journal of the ACM, 2011, 58(3):11.
[13] LIU Guangcan, LIN Zhouchen, YAN Shuicheng, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(1):171-184.
[14] MA Long, WANG Chunheng, XIAO Baihua, et al. Sparse representation for face recognition based on discriminative low-rank dictionary learning[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012:2586-2593.
[15] ZHANG Yangmuzi, JIANG Zhuolin, DAVIS L S. Learning structured low-rank representations for image classification[C]//Proceeding of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013:676-683.
[16] NGUYEN H, YANG Wankou, SHENG Biyun, et al. Discriminative low-rank dictionary learning for face recognition[J]. Neurocomputing, 2016, 173(3):541-551.
[17] CHANG Heyou, ZHENG Hao. Weighted discriminative dictionary learning based on lowrank representation[J]. Journal of physics:conference series, 2017, 90:012009.
[18] ZHANG Zheng, XU Yong, SHAO Ling, et al. Discriminative block-diagonal representation learning for image recognition[J]. IEEE transactions on neural networks and learning systems, 2018, 29(7):3111-3125.
[19] CHEN Jie, YI Zhang. Sparse representation for face recognition by discriminative low-rank matrix recovery[J]. Journal of visual communication and image representation, 2014, 25(5):763-773.
[20] COSTEIRA J P, KANADE T. A multibody factorization method for independently moving objects[J]. International journal of computer vision, 1998, 29(3):159-179.
[21] ZHUANG Liansheng, GAO Haoyuan, LIN Zhouchen, et al. Non-negative low rank and sparse graph for semi-supervised learning[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012:2328-2335.
[22] LIN Zhouchen, LIU Risheng, SU Zhixun. Linearized alternating direction method with adaptive penalty for low-rank representation[J]. Advance in neural information processing systems, 2011:612-620.
[23] LIN Zhouchen, CHEN Minming, MA Yi. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[R]. Urbana-Champaign:University of Illinois at Urbana-Champaign, 2009.
[24] BAO Bingkun, LIU Guangcan, XU Changsheng, et al. Inductive robust principal component analysis[J]. IEEE transactions on image processing, 2012, 21(8):3794-3800.
[25] CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3):273-297.
[26] HEISELE B, HO P, POGGIO T. Face recognition with support vector machine:global versus component-based approach[C]//Proceedings Eighth IEEE International Conference on Computer Vision. Vancouver, BC, Canada, 2001:688-694.
[27] CHANG C C, LIN C J. Libsvm:a library for support vector machines[J]. ACM transactions on intelligent systems and technology, 2011, 2(3):1-27.
[28] MARTINEZ A, BENAVENTE R. The AR face database[R]. CVC Technical Report No.24. Barcelona:Universitat Autonoma de Barcelona, 1998.
[29] GEORGHIADES A S, BELHUMEUR P N, KRIEGMAN D J. From few to many:illumination cone models for face recognition under variable lighting and pose[J]. IEEE transactions on pattern analysis and machine intelligence, 2001, 23(6):643-660.
[30] LEE K C, HO J, KRIEGMAN D J. Acquiring linear subspaces for face recognition under variable lighting[J]. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(5):684-698.
[31] SIM T, BAKER S, BSAT M. The CMU pose, illumination, and expression database[J]. IEEE transactions on pattern analysis and machine intelligence, 2003, 25(12):1615-1618.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems