[1]XIA Yangyang,GONG Xun,HONG Xijin.Research on the data cleansing problem for face recognition technology[J].CAAI Transactions on Intelligent Systems,2017,12(5):616-623.[doi:10.11992/tis.201706025]
Copy

Research on the data cleansing problem for face recognition technology

References:
[1] SUN Y, WANG X, TANG X. Deep learning face representation by joint identification-verification[J]. Advances in neural information processing systems, 2014, 27:1988-1996.
[2] SUN Y, WANG X, TANG X. Deep learning face representation from predicting 10,000 classes[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2014:1891-1898.
[3] 王晓刚,孙袆,汤晓鸥. 从统一子空间分析到联合深度学习:人脸识别的十年历程[J]. 中国计算机学会通讯, 2015, 11(4):8-15.WANG Xiaogang, SUN Hui, TANG Xiaoou. From unified subspace analysis to joint depth learning:ten years of face recognition[J]. China computer society newsletter, 2015, 11(4):8-15.
[4] PARKHI O M, VEDALDI A, ZISSERMAN A. Deep face recognition[C]//British Machine Vision. London,Britain, 2015:411-4112.
[5] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet:A unified embedding for face recognition and clustering[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:815-823.
[6] DING C, TAO D. A comprehensive survey on pose-invariant face recognition[J]. Acm transactions on intelligent systems and technology, 2015, 7(3):37.
[7] SUN Y, LIANG D, WANG X, et al. DeepID3:face recognition with very deep neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:963-971.
[8] SUN Y, WANG X, TANG X. Hybrid deep learning for face verification[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(10):1997-2009.
[9] TAIGMAN Y, YANG M, RANZATO M, et al. Deepface:closing the gap to human-level performance in face verification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Columbia,American,2014:1701-1708.
[10] WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]//ECCV Conference on Computer Vision.Amsterdam,Holand, 2016:499-515.
[11] HUANG G B,MATTAR M, BERG T, et al. Labeled faces in the wild:a database for studying face recognition in unconstrained environments[J].Month, 2007.
[12] SUN Y, WANG X, TANG X. Deep learning face representation from predicting 10,000 classes[C]//IEEE Conference on Computer Vision and Pattern Recognition. Hawaii, USA, 2014:1891-1898.
[13] LIU J, DENG Y, BAI T, et al. Targeting ultimate accuracy:face recognition via deep embedding[C]//European Conference on Computer Vision.Amsterdam,Netherlands, 2016:499-515.
[14] TAIGMAN Y, YANG M, RANZATO M, et al. Web-scale training for face identification[C]//Computer Vision and Pattern Recognition.Columbus, USA, 2014:2746-2754.
[15] SUN Y, WANG X, TANG X. Deeply learned face representations are sparse, selective, and robust[C]//Computer Vision and Pattern Recognition. Boston, USA, 2015:2892-2900.
[16] SCHROFF F, KALENICHENKO D, PHILBIN J. Facenet:a unified embedding for face recognition and clustering[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:815-823.
[17] WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]//European Conference on Computer Vision. Amsterdam, Netherlands,2016:499-515.
[18] SEITZ S M, MILLER D, et al.The megaface benchmark:1 million faces for recognition at scale[C]//Computer Vision and Pattern Recognition. Las Vegas,USA,2016:4873-4882.
[19] BORJI A, IZADI S, ITTI L. iLab-20M:a large-scale controlled object dataset to investigate deep learning[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:2221-2230.
[20] KEMELMACHERSHLIZERMAN I, SEITZ S M, MILLER D, et al. The megaface benchmark:1 million faces for recognition at scale[C]//Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:4873-4882.
[21] GUO Y, ZHANG L, HU Y, et al. MS-Celeb-1M:challenge of recognizing one million celebrities in the real world[C]//Electronic imaging. San Francisco,USA,2016:1-6.
[22] GUO Y, ZHANG L, HU Y, et al. MS-celeb-1M:a dataset and benchmark for large-scale face recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:113-124.
[23] BANSAL A, NANDURI A, CASTILLO C, et al. UMDFaces:an annotated face dataset for training deep networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:976-984.
[24] WOLF L, HASSENER T, MAOZ I. Face recognition in unconstrained videos with matched background similarity[C]//Computer Vision and Pattern Recognition. Colorado Springs, USA, 2011:529-534.
[25] GUO Y, ZHANG L. One-shot face recognition by promoting underrepresented classes[J]. Computer vision and pattern recognition, arxiv:1707.05574,2017.
[26] NECH A, Kemelmachershlizerman I. Level playing field for million scale face recognition[J]. Computer vision and pattern recognition, arxiv:1705.00393,2017.
[27] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE signal processing letters, 2016, 23(10):1499-1503.
[28] HUANG G.B, LEARNED-MILLER E. Labeled faces in the wild:updates and new reporting procedures[R]. Technical report UM-CS-2014-003.
[29] JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe:convolutional architecture for fast feature embedding[J]. Eprint arxiv, 2014:675-678.
[30] LIU F, ZENG D, ZHAO Q, et al. Joint face alignment and 3D face reconstruction[C]//European Conference on Computer Vision. Amsterdam,Netherlands, 2016:545-560.
Similar References:

Memo

-

Last Update: 2017-10-25

Copyright © CAAI Transactions on Intelligent Systems