[1]HE Fugui,YANG Zheng,WU Chenshu,et al.An fingerprint calibrations-free indoor localization method based on hierarchical Levenshtein distance[J].CAAI Transactions on Intelligent Systems,2017,12(3):422-429.[doi:10.11992/tis.201704031]
Copy

An fingerprint calibrations-free indoor localization method based on hierarchical Levenshtein distance

References:
[1] GU Y, LO A, NIEMEGEERS I. A survey of indoor positioning systems for wireless personal networks[J]. IEEE commun. surveys and tutorials, 2009,11(1): 13-32.
[2] HARLE R. A survey of indoor inertial positioning systems for pedestrians[J]. IEEE commun. surveys & tutorials, 2013,15(3): 1281-1293.
[3] SUBBU K P. Analysis and status quo of smart-phone-based indoor localization systems[J]. IEEE wireless commun, 2014,21(4): 106-112.
[4] 石柯,陈洪生,张仁同.一种基于支持向量回归的802.11无线室内定位方法[J].软件学报,2014,25(11): 2636-2651.SHI Ke, CHEN Hongsheng, ZHANG Rentong. Indoor location method based on support vector regression in 802.11 wireless environments[J]. Journal of software, 2014,25(11): 2636-2651.
[5] BAHL P, PADMANABHAN V. RADAR: an in-building rf-based user location and tracking system[C]//Proc. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Tel Aviv, Israel, 2000:775-784.
[6] YOUSSEF M, AGRAWALA A . The horus wlan location determination system[C]//Proceedings of the 3rd International Conferenceon Mobile Systems, Applications, and Services,Washington, USA, 2005: 205-218.
[7] WANG B, CHEN Q, YANG L T, et al. Indoor smartphone localization via fingerprint crowdsourcing: challenges and approaches[J]. IEEE wireless communication, 2016(6):82-89.
[8] TSUI A W, CHUANG Y H, CHU H H. Unsupervised learning for solving rss hardware variance problem in wifi localization[J].Mobile networks and applications, 2009,14(5): 677-691.
[9] CHENG H, WANG F, TAO R, et al. Clustering algorithms research for device-clustering localization[C]//2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN),Sydney, Australia, 2012:1-7.
[10] MAHTAB HOSSAIN A, JIN Y,SOH W S, et al. SSD: a robust RF location fingerprint addressing mobile devices heterogeneity[J]. IEEE transactions on mobile computing, 2013,12(1): 65-77.
[11] PARK J G, CURTIS D, TELLER S, et al. Implications of device diversity for organic localization[C]//The 30th IEEE International Conference on Computer Communications, Shanghai, China, 2011:3182-3190.
[12] FIGUERA C, ROJO-LVAREZ J L, MORA-JIMNEZ I, et al. Time-space sampling and mobile device calibration for wifi indoor location systems[J]. IEEE transactions on mobile computing, 2011,10(7):913-926.
[13] HAEBERLEN A, FLANNERY E, LADD A M, et al. Practical robust localization over large-scale 802.11 wireless networks[C]//Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, Philadelphia, USA, 2004: 70-84.
[14] KJRGAARD M B. Indoor location fingerprinting with heterogeneous clients[J]. Pervasive and mobile computing, 2011, 7(1):31-43.
[15] DELLA ROSA F, LEPPAKOSKI H, BIANCULLO S, et al. Ad-hoc networks aiding indoor calibrations of heterogeneous devices for fingerprinting applications[C]//2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Zurich, Switzerland, 2010: 1-6.
[16] CHEN L H, WU E H K, JIN M H, et al. Homogeneous features utilization to address the device heterogeneity problem in fingerprint localization[J]. IEEE sensors journal, 2014,14(4): 998-1005.
[17] ZOU H, LU X, JIANG H,et al. A fast and precise indoor localization algorithm based on an online sequential extreme learning machine[J]. Sensors, 2015,15(1): 1804-1824.
[18] LYMBEROPOULOS D, LIU J, YANG X, et al. A realistic evaluation and comparison of indoor location technologies: experiences and lessons learned[C] //Proceedings of the 14th International Conference on Information Processing in Sensor Networks, Catania, Italy, ACM, 2015: 178-189.
[19] YANG S. Freeloc: calibration-free crowdsourced indoor localization[C]//The 32th IEEE International Conference on Computer Communications, Turin, Italy, 2013: 2481-2489.
[20] JIANG Y. Ariel: automatic wi-fi based room fingerprinting for indoor localization[C]//Proc ACM Conf. Ubiquitous Computing, Pittsburgh, Pennsylvania, United States, 2012:441-50.
[21] SHU Y, HUANG Y, ZHANG J, et al. Gradient-based fingerprinting for indoor localization and tracking[J]. IEEE transactions on industrial electronics, 2016,63(4):2424-2433.
[22] ZOU H, HUANG B, LU X, et al. Standardizing location fingerprints across heterogeneous mobile devices for indoor localization[C]//IEEE Wireless Communications and Networking Conference (WCNC 2016). Doha, Qatar, 2016:1-6.
[23] GU Y, CHEN M, REN F, et al. HED: handling environ-mental dynamics in indoor wifi fingerprint localization[C]//IEEE Wireless Communications and Networking Conference (WCNC 2016), Doha, Qatar, 2016: 5-10.
Similar References:

Memo

-

Last Update: 2017-06-25

Copyright © CAAI Transactions on Intelligent Systems