[1]LI Xue,JIANG Shuqiang.Incremental learning and object recognition system based on intelligent HCI: a survey[J].CAAI Transactions on Intelligent Systems,2017,12(2):140-149.[doi:10.11992/tis.201701006]
Copy

Incremental learning and object recognition system based on intelligent HCI: a survey

References:
[1] ERNST M O, BüLTHOFF H H. Merging the senses into a robust percept[J]. Trends in cognitive sciences, 2004, 8(4): 162-169.
[2] CORRADINI A, MEHTA M, BERNSEN N O, et al. Multimodal input fusion in human-computer interaction[J]. NATO Science Series Sub Series III Computer and Systems Sciences, 2005, 198: 223.
[3] NODA K, ARIE H, SUGA Y, et al. Multimodal integration learning of robot behavior using deep neural networks[J]. Robotics and autonomous systems, 2014, 62(6): 721-736.
[4] MERI?LI C, KLEE S D, PAPARIAN J, et al. An interactive approach for situated task specification through verbal instructions[C]//Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems. Paris, France: International Foundation for Autonomous Agents and Multiagent Systems, 2014: 1069-1076.
[5] CANTRELL R, BENTON J, TALAMADUPULA K, et al. Tell me when and why to do it! Run-time planner model updates via natural language instruction[C]//Proceedings of the 2012 IEEE International Conference on Human-Robot Interaction. Boston, MA: IEEE, 2012: 471-478.
[6] THOMASON J, ZHANG S Q, MOONEY R, et al. Learning to interpret natural language commands through human-robot dialog[C]//Proceedings of the 24th international conference on Artificial Intelligence. Buenos Aires, Argentina: AAAI Press, 2015.
[7] EBERHARD K M, NICHOLSON H, SANDRA K, et al. The Indiana “Cooperative Remote Search Task”(CReST) corpus[C]//Proceedings of the 2010 International Conference on Language Resources and Evaluation. Valletta, Malta: LREC, 2010.
[8] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91-110.
[9] MORISSET B, RUSU R B, SUNDARESAN A, et al. Leaving flatland: toward real-time 3D navigation[C]//Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009: 3786-3793.
[10] HINTERSTOISSER S, HOLZER S, CAGNIART C, et al. Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona: IEEE, 2011: 858-865.
[11] WANG Anran, LU Jiwen, CAI Jianfei, et al. Large-margin multi-modal deep learning for RGB-D object recognition[J]. IEEE transactions on multimedia, 2015, 17(11): 1887-1898.
[12] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural computation, 1989, 1(4): 541-551.
[13] THOMASON J, SINAPOV J, SVETLIK M, et al. Learning multi-modal grounded linguistic semantics by playing I spy[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York, 2016.
[14] LIU C S, CHAI J Y. Learning to mediate perceptual differences in situated human-robot dialogue[C]//Proceedings of the Twenty-Ninth American Association Conference on Artificial Intelligence. Austin, Texas: AAAI Press, 2015: 2288-2294.
[15] PARDE N, HAIR A, PAPAKOSTAS M, et al. Grounding the meaning of words through vision and interactive gameplay[J]. Proceedings of the 24th International Conference on Artificial Intelligence. Buenos Aires, Argentina: AAAI Press, 2015.
[16] MATUSZEK C, FITZGERALD N, ZETTLEMOYER L, et al. A joint model of language and perception for grounded attribute learning[C]//Proceedings of the 29th International Conference on Machine Learning. Edinburgh, Scotland, 2012.
[17] 赵鹏, 陈浩, 刘慧婷, 等. 一种基于图的多模态随机游走重排序算法[J]. 哈尔滨工程大学学报, 2016, 37(10): 1387-1393. ZHAO Peng, CHEN Hao, LIU Huiting, et al. A multimodal graph-based re-ranking through random walk algrithm[J]. Journal of Harbin Engineering University, 2016, 37(10): 1387-1393.
[18] 段喜萍, 刘家锋, 王建华, 等. 多模态特征联合稀疏表示的视频目标跟踪[J]. 哈尔滨工程大学学报, 2015, 36(12): 1609-1613. DUAN Xiping, LIU Jiafeng, WANG Jianhua, et al. Visual target tracking via multi-cue joint sparse representation[J]. Journal of Harbin Engineering University, 2015, 36(12): 1609-1613.
[19] FISHER J W, DARRELL T. Signal level fusion for multimodal perceptual user interface[C]//Proceedings of the 2001 Workshop on Perceptive User Interfaces. New York, NY, USA: ACM, 2001: 1-7.
[20] JOHNSTON M, BANGALORE S. Finite-state multimodal parsing and understanding[C]//Proceedings of the 18th conference on Computational linguistics. Saarbrücken, Germany: ACM, 2000: 369-375.
[21] BETTERIDGE J, CARLSON A, HONG S A, et al. Toward never ending language learning[C]//Proceedings of the American Association for Artificial Intelligence. 2009: 1-2.
[22] CHERNOVA S, THOMAZ A L. Robot learning from human teachers[M]. San Rafael, CA, USA: IEEE, 2014.
[23] MATUSZEK C, BO L F, ZETTLEMOYER L, et al. Learning from unscripted deictic gesture and language for human-robot interactions[C]//Proceedings of the 28th American Association Conference on Artificial Intelligence. Québec City, Québec, Canada: AAAI Press, 2014: 2556-2563.
[24] CUAYáHUITL H, DETHLEFS N. Dialogue systems using online learning: beyond empirical methods[C]//Proceedings of the NAACL-HLT Workshop on Future Directions and Needs in the Spoken Dialog Community: Tools and Data. Montreal, Canada: Association for Computational Linguistics, 2012: 7-8.
[25] 顾海巍, 樊绍巍, 金明河, 等. 基于灵巧手触觉信息的未知物体类人探索策略[J]. 哈尔滨工程大学学报, 2016, 37(10): 1400-1407. GU Haiwei, FAN Shaowei, JIN Minghe, et al. An anthropomorphic exploration strategy of unknown object based on haptic information of dexterous robot hand[J]. Journal of Harbin Engineering University, 2016, 37(10): 1400-1407.
[26] KEIZER S, FOSTER M E, WANG Z R, et al. Machine learning for social multiparty human-robot interaction[J]. ACM transactions on interactive intelligent systems (TIIS), 2014, 4(3): 14.
[27] BOHUS D, SAW C W, HORVITZ E. Directions robot: In-the-wild experiences and lessons learned[C]//Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems. Richland, SC, 2014: 637-644.
[28] KRAUSE E A, ZILLICH M, WILLIAMS T E, et al. Learning to recognize novel objects in one shot through human-robot interactions in natural language dialogues[C]//Proceedings of the 28th American Association Conference on Artificial Intelligence. Québec City, Québec, Canada: AAAI Press, 2014: 2796-2802.
[29] MENSINK T, VERBEEK J J, PERRONNIN F, et al. Distance-based image classification: generalizing to new classes at near-zero cost[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(11): 2624-2637.
[30] IBA W, WOGULIS J, LANGLEY P A T. Trading off simplicity and coverage in incremental concept learning[C]//Proceedings of the Fifth International Conference on Machine Learning. Ann Arbor: University of Michigan, 1988: 73.
[31] GROSSBERG S. Nonlinear neural networks: Principles, mechanisms, and architectures[J]. Neural networks, 1988, 1(1): 17-61.
[32] POLIKAR R, UPDA L, UPDA S S, et al. Learn++: An incremental learning algorithm for supervised neural networks[J]. IEEE transactions on systems, man, and cybernetics, part C (Applications and reviews), 2001, 31(4): 497-508.
[33] 贾刚, 王宗义. 混合迁移学习方法在医学图像检索中的应用[J]. 哈尔滨工程大学学报, 2015, 36(7): 938-942. JIA Gang, WANG Zongyi. The application of mixed migration learning in medical image retrieval[J]. Journal of Harbin Engineering University, 2015, 36(7): 938-942.
[34] RüPING S. Incremental learning with support vector machines[C]//Proceedings of the 2011 IEEE International Conference on Data Mining. Washington, DC, USA: IEEE, 2001: 641.
[35] CAUWENBERGHS G, POGGIO T. Incremental and decremental support vector machine learning[C]//Proceedings of the 13th International Conference on Advances in neural information processing systems. Cambridge, MA, USA: MIT Press, 2000, 13: 409.
[36] JORDAN M I, JACOBS R A. Hierarchical mixtures of experts and the EM algorithm[J]. Neural computation, 1994, 6(2): 181-214.
[37] WANG E H C, KUH A. A smart algorithm for incremental learning[C]//Proceedings of the 1992 IEEE International Joint Conference on Neural Networks. Baltimore: IEEE, 1992, 3: 121-126.
[38] ENGELBRECHT A P, CLOETE I. Incremental learning using sensitivity analysis[C]//Proceedings of the 1999 International Joint Conference on Neural Networks. Washington DC: IEEE, 1999.
[39] ZHANG B T. An incremental learning algorithm that optimizes network size and sample size in one trial[C]//Proceedings of the 1994 IEEE World Congress on Computational Intelligence. Orlando, FL, USA: IEEE, 1994, 1: 215-220.
[40] LI F F, FERGUS R, PERONA P. One-shot learning of object categories[J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28(4): 594-611.
[41] TOMMASI T, ORABONA F, CAPUTO B. Learning categories from few examples with multi model knowledge transfer[J]. IEEE transactions on pattern analysis and machine intelligence, 2014, 36(5): 928-941.
[42] LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009: 951-958.
[43] KUZBORSKIJ I, ORABONA F, CAPUTO B. From N to N+1: Multiclass transfer incremental learning[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR: IEEE, 2013: 3358-3365.
[44] RISTIN M, GUILLAUMIN M, GALL J, et al. Incremental learning of NCM forests for large-scale image classification[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH: IEEE, 2014: 3654-3661.
[45] DA Qing, YU Yang, ZHOU Zhihua. Learning with augmented class by exploiting unlabeled data[C]//Proceedings of the 28th American Association Conference on Artificial Intelligence. Québec, Canada: AAAI Press, 2014: 1760-1766.
[46] CARPENTER G A, GROSSBERG S, REYNOLDS J H. ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network[J]. Neural networks, 1991, 4(5): 565-588.
[47] VIJAYAKUMAR S, OGAWA H. RKHS-based functional analysis for exact incremental learning[J]. Neurocomputing, 1999, 29(1/2/3): 85-113.
[48] KARASUYAMA M, TAKEUCHI I. Multiple incremental decremental learning of support vector machines[J]. IEEE transactions on neural networks archive, 2010, 21(7): 1048-1059.
[49] GRETTON A, DESOBRY F. On-line one-class support vector machines. an application to signal segmentation[C]//Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing. Hong Kong, China: IEEE, 2003.
[50] LASKOV P, GEHL C, KRüGER S, et al. Incremental support vector learning: Analysis, implementation and applications[J]. The Journal of machine learning research archive, 2006, 7: 1909-1936.
[51] XIAO Tianjun, ZHANG Jiaxing, YANG Kuiyuan, et al. Error-driven incremental learning in deep convolutional neural network for large-scale image classification[C]//Proceedings of the 22nd ACM international conference on Multimedia. New York, NY: ACM, 2014: 177-186.
[52] LOMONACO V, MALTONI D. Comparing incremental learning strategies for convolutional neural networks[M]//SCHWENKER F, ABBAS H, EL GAYAR N, et al, eds. Artificial Neural Networks in Pattern Recognition. ANNPR 2016. Lecture Notes in Computer Science. Cham: Springer, 2016.
[53] GRIPPO L. Convergent on-line algorithms for supervised learning in neural networks[J]. IEEE transactions on neural networks, 2000, 11(6): 1284-1299.
[54] FU Limin, HSU H H, PRINCIPE J C. Incremental backpropagation learning networks[J]. IEEE transactions on neural networks, 1996, 7(3): 757-761.
[55] GOBET F, LANE P C R, CROKER S, et al. Chunking mechanisms in human learning[J]. Trends in cognitive sciences, 2001, 5(6): 236-243.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems