[1]LI Yanhai,TUO Shouheng.Hybrid algorithm based on harmony search and differential evolution for solving multi-modal complex problems[J].CAAI Transactions on Intelligent Systems,2018,13(2):281-289.[doi:10.11992/tis.201612030]
Copy

Hybrid algorithm based on harmony search and differential evolution for solving multi-modal complex problems

References:
[1] TRELEA I C. The particle swarm optimization algorithm: convergence analysis and parameter selection[J]. Information processing letters, 2003, 85(6): 317-325.
[2] DAS S, SUGANTHAN P N. Differential evolution: a survey of the state-of-the-art[J]. IEEE transactions on evolutionary computation, 2011, 15(1): 4-31.
[3] DASGUPTA K, MANDAL B, DUTTA P, et al. A genetic algorithm (GA) based load balancing strategy for cloud computing[J]. Procedia technology, 2013, 10: 340-347.
[4] DEEPA O, SENTHILKUMAR A. Swarm intelligence from natural to artificial systems: ant colony optimization[J]. International journal on applications of graph theory in wireless Ad hoc networks and sensor networks, 2016, 8(1): 9-17.
[5] MAHDAVI M, FESANGHARY M, DAMANGIR E. An improved harmony search algorithm for solving optimization problems[J]. Applied mathematics and computation, 2007, 188(2): 1567-1579.
[6] ZOU Dexuan, GAO Liqun, WU Jianhua, et al. Novel global harmony search algorithm for unconstrained problems[J]. Neurocomputing, 2010, 73(16/17/18): 3308-3318.
[7] 夏红刚, 欧阳海滨, 高立群. 多子群混合和声搜索算法[J]. 东北大学学报: 自然科学版, 2015, 36(2): 171-175, 187.
XIA Honggang, OUYANG Haibin, GAO Liqun. Multiple-sub-groups hybrid harmony search algorithm[J]. Journal of Northeastern university: natural science, 2015, 36(2): 171-175, 187.
[8] 拓守恒, 雍龙泉, 邓方安. 动态调整策略改进的和声搜索算法[J]. 智能系统学报, 2015, 10(2): 307-315.
TUO Shouheng, YONG Longquan, DENG Fang’an. Dynamic adjustment strategy for improving the harmony search algorithm[J]. CAAI transactions on intelligent systems, 2015, 10(2): 307-315.
[9] 夏红刚, 欧阳海滨, 高立群, 等. 全局竞争和声搜索算法[J]. 控制与决策, 2016, 31(2): 310-316.
XIA Honggang, OUYANG Haibin, GAO Liqun, et al. Global competitive harmony search algorithm[J]. Control and decision, 2016, 31(2): 310-316.
[10] WANG Yong, CAI Zixing, ZHANG Qingfu. Differential evolution with composite trial vector generation strategies and control parameters[J]. IEEE transactions on evolutionary computation, 2011, 15(1): 55-66.
[11] QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE transactions on evolutionary computation, 2009, 13(2): 398-417.
[12] 李荣雨, 陈庆倩, 陈菲尔. 改进种群多样性的双变异差分进化算法[J]. 运筹学学报, 2017, 21(1): 44-54.
LI Rongyu, CHEN Qingqian, CHEN Feier. Differential evolution algorithm with double mutation strategies for improving population diversity[J]. Operations research transactions, 2017, 21(1): 44-54.
[13] WANG Ling, LI Lingpo. A coevolutionary differential evolution with harmony search for reliability-redundancy optimization[J]. Expert systems with applications, 2012, 39(5): 5271-5278.
[14] ARUL R, RAVI G, VELUSAMI S. Chaotic self-adaptive differential harmony search algorithm based dynamic economic dispatch[J]. International journal of electrical power and energy systems, 2013, 50: 85-96.
[15] 雍龙泉, 刘三阳, 张建科, 等. 基于差分算子的和声搜索算法求解非线性l1模极小化问题[J]. 兰州大学学报: 自然科学版, 2013, 49(4): 541-546.
YONG Longquan, LIU Sanyang, ZHANG Jianke, et al. Improved harmony search algorithm with differential operator for nonlinear l1 norm minimization problems[J]. Journal of Lanzhou university: natural sciences, 2013, 49(4): 541-546.
[16] YONG Longquan, LIU Sanyang. An improved harmony search algorithm with differential operator for absolute value equation[J]. ICIC express letters, 2014, 8(4): 1151-1157.
[17] ABEDINPOURSHOTORBAN H, HASAN S, SHAMSUDDIN S M, et al. A differential-based harmony search algorithm for the optimization of continuous problems[J]. Expert systems with applications, 2016, 62: 317-332.
[18] TANG K, YAO X, SUGANTHAN P N, et al. Benchmark functions for the CEC’2008 special session and competition on large scale global optimization[R]. Technical Report. China: Nature Inspired Computation and Applications Laboratory, USTC, 2007.
[19] TANG Ke, LI Xiaohong, SUGANTHAN P N, et al. Benchmark functions for the CEC’2010 special session and competition on large-scale global optimization[R]. Technical Report. Nanyang: Nature Inspired Computation and Applications Laboratory, USTC, China and Nanyang Technological University, 2009.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems