[1]MIAO Duoqian,ZHANG Qinghua,QIAN Yuhua,et al.From human intelligence to machine implementation model: theories and applications based on granular computing[J].CAAI Transactions on Intelligent Systems,2016,11(6):743-757.[doi:10.11992/tis.201612014]
Copy

From human intelligence to machine implementation model: theories and applications based on granular computing

References:
[1] ZADEH L A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy sets and systems, 1997, 90(2):111-127.
[2] http://link.springer.com/journal/41066.
[3] http://www.nsfc.gov.cn/nsfc/cen/xmzn/2016xmzn/04/06xx/004.html.
[4] http://dblp.uni-trier.de/db/conf/rsfdgrc/.
[5] HU Qinghua, MI Jusheng, CHEN Degang. Granular computing based machine learning in the era of big data[J]. Information Sciences, 2017, 378:242-243.
[6] 梁吉业, 钱宇华, 李德玉, 等. 大数据挖掘的粒计算理论与方法[J]. 中国科学:信息科学, 2015, 45(11):1355-1369. LIANG Jiye, QIAN Yuhua, LI Deyu, et al. Theory and method of granular computing for big data mining[J]. Scientia sinica informationis, 2015, 45(11):1355-1369.
[7] ZHANG Bo, ZHANG Ling. Theory and applications of problem solving[M]. New York:North Holland, 1992.
[8] FRIEDMAN N. Inferring cellular networks using probabilistic graphical models[J]. Science, 2004, 303(5659):799-805.
[9] CLAUSET A, MOORE C, NEWMAN M E J. Hierarchical structure and the prediction of missing links in networks[J]. Nature, 2008, 453(7191):98-101.
[10] AHN Y Y, BAGROW J P, LEHMANN S. Link communities reveal multiscale complexity in networks[J]. Nature, 2010, 466(7307):761-764.
[11] WU W Z, LEUNG Y. Theory and applications of granular labelled partitions in multi-scale decision tables[J]. Information sciences, 2011, 181(18):3878-3897.
[12] GEOFFREY E, Ruslan R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[13] HU Hong, PANG Liang, SHI Zhongzhi. Image matting in the perception granular deep learning[J]. Knowledge-based systems. 2016, 102:51-63.
[14] ZADEH L A. Fuzzy sets[J]. Information and control, 1965, 8(3):338-353.
[15] SHANNON C E. A mathematical theory of communication[J]. The bell system technical journal, 1948, 27(3):379-423.
[16] WANG Guoyin, HU Jun, ZHANG Qinghua, et al. Granular computing based data mining in the views of rough set and fuzzy set[C]//Proceedings of 2008 IEEE International Conference on Granular Computing. Hangzhou, China:IEEE, 2008:67-78.
[17] ZADEH L A. Fuzzy sets and information granularity[C]//GUPTA N, RAGADE R, YAGER R. Advances in Fuzzy Set Theory and Applications. Amsterdam:North-Holland, 1979:3-18.
[18] ZADEH L A. Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems[J]. Soft computing, 1998, 2(1):23-25.
[19] PAWLAK Z. Rough sets[J]. International journal of computer & information sciences, 1982, 11(5):341-356.
[20] 张钹, 张铃. 问题求解理论及应用[M]. 北京:清华大学出版社, 1990.
[21] 李德毅, 孟海军, 史雪梅. 隶属云和隶属云发生器[J]. 计算机研究与发展, 1995, 32(6):15-20. LI Deyi, MENG Haijun, SHI Xuemei. Membership clouds and membership cloud generators[J]. Journal of computer research & development, 1995, 32(6):15-20.
[22] 李德毅, 杜鹢. 不确定性人工智能[M]. 北京:国防工业出版社, 2014.
[23] YAO Yiyu. An outline of a theory of three-way decisions[C]//Proceedings of the 8th International RSCTC Conference. Chengdu, China:Springer, 2012, 7413:1-17.
[24] 姚一豫. 三支决策研究的若干问题[M]//刘盾, 李天瑞, 苗夺谦, 等. 三支决策与粒计算[M]. 北京:科学出版社, 2013:1-13.
[25] HU Baoqing. Three-way decisions space and three-way decisions[J]. Information sciences, 2014, 281:21-52.
[26] MA Lijia, GONG Maoguo, YAN Jianan et al. A decomposition-based multi-objective optimization for simultaneous balance computation and transformation in signed networks[J]. Information sciences, 2017, 378:144-160.
[27] GUERIN C. RIGAUD C. BERTET K. et al. An ontology-based framework for the automated analysis and interpretation of comic book’s images[J]. Information sciences. 2017, 378:109-130.
[28] YAO Yiyu, SHE Yanhong. Rough set models in multigranulation spaces[J]. Information sciences, 2016, 327:40-56.
[29] ZHANG Xiaohong, MIAO Duoqian, LIU Caihui, et al. Constructive methods of rough approximation operators and multigranulation rough sets[J]. Knowledge-based systems, 2016, 91:114-125.
[30] 苗夺谦, 徐菲菲, 姚一豫, 等. 粒计算的集合论描述[J]. 计算机学报, 2012, 35(2):351-363. MIAO Duoqian, XU Feifei, YAO Yiyu, et al. Set-theoretic formulation of granular computing[J]. Chinese journal of computers, 2012, 35(2):351-363.
[31] ZHANG Qinghua, WANG Guoyin. The uncertainty measure of hierarchical quotient space structure[J]. Mathematical problems in engineering, 2011, 2011, 513195.
[32] WANG Guoyin, XU Ji, ZHANG Qinghua, et al. Multi-granularity intelligent information processing[C]//Proceedings of the 15th International Conference, RSFDGrC. Tianjin, China:Springer, 2015:36-48.
[33] QIAN Yuhua, LIANG Jiye, Yao Yiyu, Dang Chuangyin. MGRS:A multi-granulation rough set[J]. Information sciences, 2010, 180:949-970.
[34] LIN Guoping, QIAN Yuhua, LI Jinjin. NMGRS:neighborhood-based multigranulation rough sets[J]. International journal of approximate reasoning, 2012, 53(7):1080-1093.
[35] XU Weihua, WANG Qiaorong, ZHANG Xiantao. Multi-granulation rough sets based on tolerance relations[J]. Soft computing, 2013, 17(7):1241-1252.
[36] Chen Yan. An adjustable multigranulation fuzzy rough set[J]. International journal of machine learning and cybernetics, 2016, 7(2):267-274.
[37] TAN Anhui, WU Weizhi, LI Jinjin, et al. Evidence-theory-based numerical characterization of multigranulation rough sets in incomplete information systems[J]. Fuzzy sets and systems, 254(2016):18-35.
[38] LI Feijiang, QIAN Yuhua, WANG Jieting et al. Multigranulation information fusion:a dempster-shafer evidence theory-based clustering ensemble method[J]. Information sciences, 2017, 378:389-409.
[39] WU Weizhi, LEUNG Y. Optimal scale selection for multi-scale decision tables[J]. International journal of approximate reasoning, 2013, 54(8):1107-1129.
[40] GU Shenming, WU Weizhi. On knowledge acquisition in multi-scale decision systems[J]. International journal of machine learning and cybernetics, 2013, 4(5):477-486.
[41] ZHU W. Topological approaches to covering rough sets[J]. Information sciences, 2007, 177(6):1499-1508.
[42] ZHU W, WANG Feiyue. On three types of covering-based rough sets[J]. IEEE transactions on knowledge and data engineering, 2007, 19(8):1131-1144.
[43] ZHU W. Relationship between generalized rough sets based on binary relation and covering[J]. Information sciences, 2009, 179(3):210-225.
[44] LIU Caihui, MIAO Duoqian, QIAN Jin. On multi-granulation covering rough sets[J]. International journal of approximate reasoning, 2014, 55(6):1404-1418.
[45] LIU Caihui, PEDRYCZ W. Covering-based multi-granulation fuzzy rough sets[J]. Journal of intelligent & fuzzy systems, 2016, 30(1):303-318.
[46] FENG Qinrong, MIAO Duoqian, CHENG Yi. Hierarchical decision rules mining[J]. Expert systems with applications, 2010, 37(3):2081-2091.
[47] QIAN Jin, LV Ping, YUE Xiaodong et al. Hierarchical attribute reduction algorithms for big data using MapReduce[J]. Knowledge-based systems. 2015, 73:18-31.
[48] CHEN Hongmei, LI Tianrui, RUAN Da. Maintenance of approximations in incomplete ordered decision systems while attribute values coarsening or refining[J]. Knowledge-based systems, 2012, 31:140-161.
[49] CHEN Hongmei, LI Tianrui, LUO Chuan, et al. A rough set-based method for updating decision rules on attribute values’ coarsening and refining[J]. IEEE transactions on knowledge and data engineering, 2014, 26(12):2886-2899.
[50] 张贤勇. 基于精度与程度逻辑组合的几类粗糙集模型及其算法研究[D]. 成都:四川师范大学, 2011. ZHANG Xianyong. Study on several rough set models and their algorithms based on logical combinations of precision and grade[D]. Chengdu:Sichuan Normal University, 2011.
[51] XU Weihua, GUO Yanting. Generalized multigranulation double-quantitative decision-theoretic rough set[J]. Knowledge-based systems, 2016, 105:190-205.
[52] FANG Bowen, HU Baoqing. Probabilistic graded rough set and double relative quantitative decision-theoretic rough set[J]. International journal of approximate reasoning, 2016, 74:1-12.
[53] ZHANG Xianyong, MIAO Duoqian. Double-quantitative fusion of accuracy and importance:systematic measure mining, benign integration construction, hierarchical attribute reduction[J]. Knowledge-based systems, 2016, 91:219-240.
[54] 李德毅, 刘常昱, 杜鹢, 等. 不确定性人工智能[J]. 软件学报, 2004, 15(11):1583-1594. LI Deyi, LIU Changyu, DU Yi, et al. Artificial intelligence with uncertainty[J]. Journal of software, 2004, 15(11):1583-1594.
[55] 王国胤, 张清华. 不同知识粒度下粗糙集的不确定性研究[J]. 计算机学报, 2008, 31(9):1588-1598. WANG Guoyin, ZHANG Qinghua. Uncertainty of rough sets in different knowledge granularities[J]. Chinese journal of computers, 2008, 31(9):1588-1598.
[56] 张清华, 王国胤, 胡军. 多粒度知识获取与不确定性度量[M]. 北京:科学出版社, 2013. ZHANG Qinghua, WANG Guoyin, HU Jun. Knowledge acquisition of multi-granular and uncertainty measurements[M]. Beijing:Science Press, 2013. (未找到本条文献英文信息,请核对)
[57] 刘宝碇, 彭锦. 不确定理论教程[M]. 北京:清华大学出版社, 2005. LIU Baoding, PENG Jin. Tutorial of uncertainty theory[M]. Beijing:Tsinghua Press, 2005.
[58] 苗夺谦, 李德毅, 姚一豫, 等. 不确定性与粒计算[M]. 北京:科学出版社, 2011. MIAO Duoqian, LI Deyi, YAO Yiyu, et al. Uncertainty and granular computing[M]. Beijing:Science Press, 2011.
[59] 苗夺谦, 王珏. 粗糙集理论中知识粗糙性与信息熵关系的讨论[J]. 模式识别与人工智能, 1998, 11(1):34-40. MIAO Duoqian, WANG Jue. On the relationships between information entropy and roughness of knowledge in rough set theory[J]. Pattern recognition & artificial intelligence, 1998, 11(1):34-40.
[60] DE LUCA A, TERMINI S. A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory[J]. Information and control, 1972, 20(4):301-312.
[61] 张文修, 吴伟志, 梁吉业, 等. 粗糙集理论与方法[M]. 北京:科学出版社, 2001. ZHANG Wenxiu, WU Weizhi, LIANG Jiye, et al. Rough sets theory and method[M]. Beijing:Science Press, 2001.
[62] LIANG Jiye, SHI Zhongzhi. The information entropy, rough entropy and knowledge granulation in rough set theory[J]. International journal of uncertainty, fuzziness and knowledge-based systems, 2004, 12(1):37-46.
[63] DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. The annals of mathematical statistics, 1967, 38(2):325-339.
[64] SHAFER G. A mathematical theory of evidence[M]. Princeton:Princeton University Press, 1976.
[65] 苗夺谦, 范世栋. 知识的粒度计算及其应用[J]. 系统工程理论与实践, 2002, 22(1):48-56. MIAO Duoqian, FAN Shidong. The calculation of knowledge granulation and its application[J]. Systems engineering-theory & practice, 2002, 22(1):48-56.
[66] 苗夺谦, 王国胤, 刘清等. 粒计算:过去、现在与展望[M]. 北京:科学出版社, 2007.
[67] QIAN Yuhua, LIANG Jiye. Combination entropy and combination granulation in rough set theory[J]. International journal of uncertainty, fuzziness and knowledge-based systems, 2008, 16(2):179-193.
[67] QIAN Yuhua, LIANG Jiye. Combination entropy and combination granulation in incomplete information system[J]. Lecture notes in computer science, 2006, 4062:184-190.
[69] WANG Junhong, LIANG Jiye, QIAN Yuhua, et al. Uncertainty measure of rough sets based on a knowledge granulation for incomplete information systems[J]. International journal of uncertainty, fuzziness and knowledge-based systems, 2008, 16(2):233-244.
[70] 梁吉业, 钱宇华. 信息系统中的信息粒与熵理论[J]. 中国科学E辑:信息科学, 2008, 38(12):2048-2065. LIANG Jiye, QIAN Yuhua. Information granules and entropy theory in information systems[J]. Science in China series F:information sciences, 2008, 51(10):1427-1444.
[71] BAYES T. An essay towards solving a problem in the doctrine of chances[J]. Philosophical transactions of the royal society, 53(1763):370-418.
[72] YU Jianhang, ZHANG Xiaoyan, ZHAO Zhenhua et al. Uncertainty measures in multigranulation with different grades rough set based on dominance relation[J]. Journal of intelligent & fuzzy systems, 2016,31:1133-1144.
[73] LIN Guoping, LIANG Jiye, QIAN Yuhua. Uncertainty measures for multigranulation approximation space[J]. International journal of uncertainty fuzziness and knowledge-based systems, 2015, 23(3) 443-457.
[74] ZHANG Qinghua, ZHANG Qiang, WANG Guoyin. The uncertainty of probabilistic rough sets in multi-granulation spaces[J]. International journal of approximate reasoning, 2016, 77:38-54.
[75] 苗夺谦. Rough Set理论及其在机器学习中的应用研究[D]. 1997, 北京,中国科学院自动化研究所.MIAO Duoqian. Rough set theory and its application in machine learning[D]. 1997, Beijing, Institute of Automation, Chinese Academy of Sciences.
[76] MA Zhouming, MI Jusheng. A comparative study of MGRSs and their uncertainty measures[J]. Fundamenta informaticae, 2015, 142:161-181.
[77] HUANG Bing, GUO Chunxiang, LI Huaxiong, et al. Hierarhical structures and uncertainty measures for intuitionistic fuzzy approximate space[J]. Information Sciences, 2016, 336:92-114.
[78] LIANG Jiye, WANG Feng, DANG Chuangyin, et al. An efficient rough feature selection algorithm with a multi-granulation view[J]. International journal of approximate reasoning, 2012, 53(6):912-926.
[79] LIN Yaojin, LI Jinjin, LI Peirong, et al. Feature selection via neighborhood multi-granulation fusion[J]. Knowledge-based systems, 2014, 67:162-168.
[80] 桑妍丽,钱宇华. 一种悲观多粒度粗糙集中的粒度约简算法[J]. 模式识别与人工智能, 2012, 25(3):361-366. SANG Yanli, QIAN Yuhua. A granular space reduction approach to pessimistic multi-granulation rough sets[J]. Pattern recognition and artificial intelligence, 2012, 25(3):361-366.
[81] SHE Yanhong, LI Jinhai, YANG Hailong. A local approach to rule induction in multi-scale decision tables[J]. Knowledge-based systems, 2015, 89:398-410.
[82] 邓大勇, 徐小玉, 黄厚宽. 基于并行约简的概念漂移探测[J]. 计算机研究与发展, 2015, 52(5):1071-1079.DENG Dayong, XU Xiaoyu, HUANG Houkuan. Concept drifting detection for categorical evolving data based on parallel reducts[J]. Journal of computer research and development, 2015, 52(5):1071-1079.
[83] 徐计, 王国胤, 于洪. 基于粒计算的大数据处理[J]. 计算机学报, 2015, 38(8):1497-1517. XU Ji, WANG Guoyin, YU Hong. Review of big data processing based on granular computing[J]. Chinese journal of computers, 2015, 38(8):1497-1517.
[84] RUAN Junhu, WANG Xuping, SHI Yan. Developing fast predictors for large-scale time series using fuzzy granular support vector machines[J]. Applied soft computing, 2013, 13(6):3981-4000.
[85] HE Jieyue, ZHONG Wei, HARRISON R, et al. Clustering support vector machines and its application to local protein tertiary structure prediction[C]//Proceedings of the 6th International Conference on Computational Science. Reading, UK:Springer-Verlag, 2006:710-717.
[86] 欧阳继红, 刘燕辉, 李熙铭, 等. 基于LDA的多粒度主题情感混合模型[J]. 电子学报, 2015, 43(9):1875-1880. OUYANG Jihong, LIU Yanhui, LI Ximing, et al. Multi-grain sentiment/topic model based on LDA[J]. Acta electronica sinica, 2015, 43(9):1875-1880.
[87] WANG Xuekuan, ZHAO Cairong, MIAO Duoqian, et al. Fusion of multiple channel features for person re-identification[J]. Neurocomputing, 2016, 213:125-136.
[88] XU Weihua, YU Jianhang. A novel approach to information fusion in multi-source datasets:a granular computing viewpoint[J]. Information sciences, 2017, 378:410-423.
[89] LIN Guoping, LIANG Jiye, QIAN Yuhua. et al. A fuzzy multigranulation decision-theoretic approach to multisource fuzzy information systems[J]. Knowledge-based systems, 2016, 91:102-113.
[90] http://cncc.ccf.org.cn/struct/7.
[91] LI Jinhai, HUANG Chenchen, QI Jianjun et al. Three-way cognitive concept learning via multi-granularity[J]. Information Sciences. 2017, 378244-263.
[92] YAO Yiyu. Three-way decisions and cognitive computing[J]. Cognitive Computation. 2016, 8(4):543-554.
[93] 刘清, 邱桃荣,刘斓. 基于非标准分析的粒计算研究[J]. 计算机学报. 2015, 38(8):1618-1627.LIU Qing, QIU Taorong, LIU Lan. The research of granular computing based on nonstandard analysis[J]. Chinese journal of computers, 2015, 38(8):1618-1627.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems