[1]WANG Chao,LIU Yiqun,MA Shaoping.A survey of click models for Web browsing[J].CAAI Transactions on Intelligent Systems,2016,11(6):711-718.[doi:10.11992/tis.201605023]
Copy

A survey of click models for Web browsing

References:
[1] ROBERTSON S, ZARAGOZA H. The probabilistic relevance framework:BM25 and beyond[M]. Hanover, MA:Now Publishers Inc, 2009.
[2] SPARCK JONES K. A statistical interpretation of term specificity and its application in retrieval[J]. Journal of documentation, 1972, 28(1):11-21.
[3] ROBERTSON S E, WALKER S, JONES S, et al. Okapi at trec-3[Z]. Nist Special Publication Sp, 1995, 109:109.
[4] LV Y, ZHAI C. When documents are very long, bm25 fails![C]//Proceedings of the 34th International ACM SIGIRConference on Research and Development in Information Retrieval. New York:ACM, 2011:1103-1104.
[5] PAGE L, BRIN S, MOTWANI R, et al. The pagerank citation ranking:bringing order to the web[Z]. Stanford:Stanford University, 1999.
[6] GYONGYI Z, GARCIA-MOLINA H, PEDERSEN J. Combating web spam with trustrank[C]//Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, Canada:VLDB Endowment, 2004:576-587.
[7] SUROWIECKI J. The wisdom of crowds[Z]. Anchor, 2005.
[8] AGICHTEIN E, BRILL E, DUMAIS S, et al. Learning user interaction models for predicting web search result preferences[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA:ACM, 2006:3-10.
[9] CRASWELL N, ZOETER O, TAYLOR M, et al. An experimental comparison of click position-bias models[C]//Proceedings of the 2008 International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2008:87-94.
[10] JOACHIMS T, GRANKA L, PAN B, et al. Accurately interpreting clickthrough data as implicit feedback[C]//Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA:ACM, 2005:154-161.
[11] WANG C, LIU Y, ZHANG M, et al. Incorporating vertical results into search click models[C]//Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. New York, NY, USA:ACM, 2013:503-512.
[12] YUE Y S, PATEL R, ROEHRIG H. Beyond position bias:Examining result attractiveness as a source of presentation bias in clickthrough data[C]//Proceedings of the 19th International Conference on World Wide Web. New York, NY, USA:ACM, 2010:1011-1018.
[13] GUO F, LIU C, WANG Y M. Efficient multiple-click models in web search[C]//Proceedings of the Second ACM International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2009:124-131.
[14] DUPRET G E, PIWOWARSKI B. A user browsing model to predict search engine click data from past observations[C]//Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA:ACM, 2008:331-338.
[15] CHAPELLE O, ZHANG Y. A dynamic bayesian network click model for web search ranking[C]//Proceedings of the 18th International Conference on World Wide Web. New York, NY, USA:ACM, 2009:1-10.
[16] CHEN D Q, CHEN W Z, WANG H X, et al. Beyond ten blue links:enabling user click modeling in federated web search[C]//Proceedings of the 5th ACM International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2012:463-472.
[17] LIU Z Y, LIU Y Q, ZHOU K, et al. Influence of vertical result in web search examination[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA:ACM, 2015:193-202.
[18] KL?CKNER K, WIRSCHUM N, JAMESON A. Depth-and breadth-first processing of search result lists[C]//CHI’04 Extended Abstracts on Human Factors in Computing. New York, NY, USA:ACM, 2004:1539.
[19] LORIGO L, PAN B, HEMBROOKE H, et al. The influence of task and gender on search and evaluation behavior using google[J]. Information processing & management, 2006, 42(4):1123-1131.
[20] XU W H, MANAVOGLU E, CANTU-PAZ E. Temporal click model for sponsored search[C]//Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA:ACM, 2010:106-113.
[21] WANG K S, GLOY N, LI X L. Inferring search behaviors using partially observable Markov (POM) model[C]//Proceedings of the third ACM International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2010:211-220.
[22] WANG C, LIU Y Q, WANG M, et al. Incorporating non-sequential behavior into click models[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA:ACM, 2015:283-292.
[23] GUO F, LIU C, KANNAN A, et al. Click chain model in web search[C]//Proceedings of the 18th International Conference on World Wide Web. New York, NY, USA:ACM, 2009:11-20.
[24] HU B T, ZHANG Y C, CHEN W Z, et al. Characterizing search intent diversity into click models[C]//Proceedings of the 20th International Conference on World Wide Web. New York, NY, USA:ACM, 2011:17-26.
[25] CHEN W Z, WANG D, ZHANG Y C, et al. A noise-aware click model for web search[C]//Proceedings of the 5th ACM International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2012:313-322.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems