[1]ZHANG Wenxu,MA Lei,WANG Xiaodong.Reinforcement learning for event-triggered multi-agent systems[J].CAAI Transactions on Intelligent Systems,2017,12(1):82-87.[doi:10.11992/tis.201604008]
Copy

Reinforcement learning for event-triggered multi-agent systems

References:
[1] ZHU Wei, JIANG ZhongPing, FENG Gang. Event-based consensus of multi-agent systems with general linear models[J]. Automatica, 2014, 50(2): 552-558.
[2] FAN Yuan, FENG Gang, WANG Yong, et al. Distributed event-triggered control of multi-agent systems with combinational measurements[J]. Automatica, 2013, 49(2): 671-675.
[3] WANG Xiaofeng, LEMMON M D. Event-triggering in distributed networked control systems[J]. IEEE transactions on automatic control, 2011, 56(3): 586-601.
[4] TABUADA P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE transactions on automatic control, 2007, 52(9): 1680-1685.
[5] ZOU Lei, WANG Zidong, GAO Huijun, et al. Event-triggered state estimation for complex networks with mixed time delays via sampled data information: the continuous-time case[J]. IEEE transactions on cybernetics, 2015, 45(12): 2804-2815.
[6] SAHOO A, XU Hao, JAGANNATHAN S. Adaptive neural network-based event-triggered control of single-input single-output nonlinear discrete-time systems[J]. IEEE transactions on neural networks and learning systems, 2016, 27(1): 151-164.
[7] HU Wenfeng, LIU Lu, FENG Gang. Consensus of linear multi-agent systems by distributed event-triggered strategy[J]. IEEE transactions on cybernetics, 2016, 46(1): 148-157.
[8] ZHONG Xiangnan, NI Zhen, HE Haibo, et al. Event-triggered reinforcement learning approach for unknown nonlinear continuous-time system[C]//Proceedings of 2014 International Joint Conference on Neural Networks. Beijing, China, 2014: 3677-3684.
[9] XU Hao, JAGANNATHAN S. Near optimal event-triggered control of nonlinear continuous-time systems using input and output data[C]//Proceedings of the 11th World Congress on Intelligent Control and Automation. Shenyang, China, 2014: 1799-1804.
[10] BERNSTEIN D S, GIVAN R, IMMERMAN N, et al. The complexity of decentralized control of Markov decision processes[J]. Mathematics of operations research, 2002, 27(4): 819-840.
[11] WATKINS C J C H, DAYAN P. Q-learning[J]. Machine learning, 1992, 8(3/4): 279-292.
[12] SZEPESVRI C, LITTMAN M L. A unified analysis of value-function-based reinforcement-learning algorithms[J]. Neural computation, 1999, 11(8): 2017-2060.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems