[1]MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11(3):279-286.[doi:10.11992/tis.201603026]
Copy

Sparse representation via deep learning features based face recognition method

References:
[1] DONOHO D L. Compressed sensing[J]. Information theory, 2006, 52(4): 1289-1306.
[2] LEE K C, HO J, KRIEGMAN D. Acquiring linear subspaces for face recognition under variable lighting[J]. Pattern analysis and machine intelligence, 2005, 27(5): 684-698.
[3] NASEEM I, TOGNERI R, BENNAMOUN M. Linear regression for face recognition[J]. Pattern analysis and machine intelligence, 2010, 32(11): 2106-2112.
[4] WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. Pattern analysis and machine intelligence, 2009, 31(2): 210-227.
[5] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. Signal processing, 2006, 54(11): 4311-4322.
[6] YANG M, ZHANG L, YANG J, et al. Metaface learning for sparse representation based face recognition[C]// Proceedings of the IEEE International Conference on Image Processing, Hong Kong, China, 2010, 119(5):1601-1604.
[7] YANG M, ZHANG D, FENG X, et al. Fisher discrimination dictionary learning for sparse representation[C]// Proceedings of the IEEE International Conference on Computer Vision. Barcelona, Spain, 2011, 24(4):543-550.
[8] YANG J, ZHANG Y. Alternating direction algorithms for l1-problems in compressive sensing[J]. arXiv: 0912.1185, 2009, (1):250-278.
[9] UJDAT D M, MALIOUTOV D M, ETIN M, et al. Homotopy continuation for sparse signal representation[C]// Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing,Philadelphia, USA, 2005:733-736.
[10] KOH K, KIM S J, BOYD S P. An interior-point method for large-scale l1-regularized logistic regression[J]. Journal of machine learning research, 2007, 8(8): 1519-1555.
[11] LIU Y, WU F, ZHANG Z. Sparse representation using nonnegative curds and whey[C]// Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010, 119(5):3578-3585.
[12] GAO S, TSANG I W, Chia L, et al. Local features are not lonely-laplacian sparse coding for image classification[C]// Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010, 23(3):3555-3561.
[13] FISER J, BERKES P, WHITE B. No evidence for active sparsification in the visual cortex[C]// Advances in Neural Information Processing Systems,Vancouver, B.C., Canada, 2009: 108-116.
[14] ZHANG D, YANG M, FENG X. Sparse representation or collaborative representation: which helps face recognition?[C]// Proceedings of the IEEE International Conference on Computer Vision. Barcelona, Spain, 2011, 6669(5):471-478.
[15] DENG W, HU J, GUO J. Extended SRC: undersampled face recognition via intraclass variant dictionary[J]. Pattern analysis and machine intelligence, IEEE transactions on, 2012, 34(9): 1864-1870.
[16] GUO J. In defense of sparsity based face recognition[C]// Proceedings of the IEEE International Conference on Computer Vision. Sydney, NSW, Australia, 2013, 9(4):399-406.
[17] SU Y, SHAN S, CHEN X, et al. Adaptive generic learning for face recognition from a single sample per person[C]// Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 2699-2706.
[18] WEI C, WANG Y-F. Learning auxiliary dictionaries for undersampled face recognition[C]// Proceedings of the IEEE International Conference on Multimedia and Expo.San Jose, California, USA, 2013, 2013:1-6.
[19] WANG X, TANG X. Unified subspace analysis for face recognition[C]// null. Proceedings of the IEEE International Conference on Computer Vision. Nice, France, 2003:679-686.
[20] LECUN Y L, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition. Proc IEEE[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[21] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Advances in Neural Information Processing Systems.Lake Tahoe, Nevada, USA, 2012, 25:2012.
[22] TAIGMAN Y, YANG M, RANZATO M A, et al. Deepface: Closing the gap to human-level performance in face verification[C]// Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014: 1701-1708.
[23] SUN Y, WANG X, TANG X. Deeply learned face representations are sparse, selective, and robust[J]. arXiv: 1412.1265, 2014.
[24] SZEGEDY C, LIU W, JIA Y, ET AL. Going deeper with convolutions[J]. arXiv: 1409.4842, 2014.
[25] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: A unified embedding for face recognition and clustering[J]. arXiv preprint arXiv:1503.03832, 2015.
[26] YI D, LEI Z, LIAO S, ET AL. Learning face representation from scratch[J]. arXiv preprint arXiv:1411.7923. 2014.
[27] V. KAZEMI AND J. SULLIVAN. One millisecond face alignment with an ensemble of regression trees[C]// Pro-ceedings of the IEEE International Conference on Computer Vision and Pattern Recognition.Columbus, OH, USA, 2014:1867-1874.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems