[1]DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10(1):1-11.[doi:10.3969/j.issn.1673-4785.201403072]
Copy

A review on general purpose computing on GPUs and its applications in computational intelligence

References:
[1] OWENS J D, LUEBKE D, GOVINDARAJU N, et al. A survey of general-purpose computation on graphics hardware[J]. Computer Graphics Forum, 2007, 26(1): 80-113.
[2] OWENS J D, LUEBKE D, GOVINDARAJU N, et al. GPU computing[J]. Proceedings of the IEEE, 2008, 96(5): 879-899.
[3] SUTTER H. The free lunch is over: a fundamental turn toward concurrency in software[J]. Dr. Dobb’s Journal, 2005, 30(3): 202-210.
[4] ROSS P E. Why CPU frequency stalled[J]. Spectrum, 2008, 45(4): 72-78.
[5] BORKAR S. Getting gigascale chips: challenges and opportunities in continuing Moore’s Law[J]. Queue, 2003, 1(7): 26-33.
[6] NVIDIA. CUDA C programming guide v6.5[R]. Santa Clara, CA, USA: NVIDIA Corporation, 2014.
[7] JARARWEH Y, JARRAH M, BOUSSELHAM A, et al. GPU-based personal supercomputing[C]//2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies. Amman, 2013: 1-5.
[8] KAPASI U J, RIXNER S, DALLY W J, et al. Programmable stream processors[J]. Computer, 2003, 36(8): 54-62.
[9] BUCK I, FOLEY T, HORN D, et al. Brook for GPUs: stream computing on graphics hardware[J]. ACM Transactions on Graphics, 2004, 23(3): 777-786.
[10] Microsoft. C++ accelerated massive parallelism[Z]. Redmond, WA, USA: Microsoft, 2013.
[11] NVIDIA. CUDA C best practices guide version 4.1[R]. Santa Clara, CA, USA: NVIDIA Corporation, 2012.
[12] NVIDIA. GPU-Accelerated Libraries.[OL/EB].[2015-01-05]. https://developer.nvidia.com/gpu-accelerated-libraries.
[13] JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe: convolutional architecture for fast feature embedding[C]//Proceedings of the ACM International Conference on Multimedia,[s.l.], 2014: 675-678.
[14] GASTER B, HOWES L, KAELI D R,等. OpenCL异构计算[M]. 北京: 清华大学出版社, 2012: 10-35.
[15] KIRK D B, HWU W W. Programming massively parallel processors: a Hands-on approach[M]. Beijing: Tsinghua University Press, 2010: 205-220.
[16] MUNSHI A, GASTER B, MATTSON T G, et al. OpenCL Programming Guide[M]. Boston: Addison_Wesley Professional, 2011: 63-68.
[17] AMD上海研发中心. 跨平台的多核与从核编程讲义——OpenCL的方式[M]. 上海: AMD, 2010: 1-154.
[18] FARBER R. 高性能 CUDA应用设计与开发[M]. 北京:机械工业出版社, 2013: 1-49.
[19] ZEILER M, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland, 2014: 818-833.
[20] HINTON G, OSINDERO S, WELLING M, et al. Unsupervised discovery of nonlinear structure using contrastive backpropagation[J]. Nature, 2006, 30(4): 725-731.
[21] KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25. Reno, Nevada, USA, 2012: 1106-1114.
[22] COATES A, HUVAL B, WANG T, et al. Deep learning with COTS HPC systems[C]//Proceedings of the 30th International Conference on Machine Learning. Atlanta, USA, 2013: 1337-1345.
[23] ZHOU Y, TAN Y. GPU-based parallel particle swarm optimization[C]//IEEE Congress on Evolutionary Computation. Trondheim, Norway, 2009: 1493-1500.
[24] ZHOU Y, TAN Y. Particle swarm optimization with triggered mutation and its implementation based on GPU[C]//GECCO’10: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation. Portland, Oregon, USA, 2010: 1-8.
[25] ZHOU Y, TAN Y. GPU-based parallel multi-objective particle swarm optimization[J]. International Journal of Artificial Intelligence, 2011, 7(A11): 125-141.
[26] DING K, TAN Y. A GPU-based parallel fireworks algorithm for optimization[C]//GECCO’13: Proceedings of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference. Amsterdam, the Netherlands, 2013: 9-16.
[27] TAN Y, ZHU Y. Fireworks algorithm for optimization[C]//First International Conference of Swarm Intelligence. Beijing, China, 2010: 355-364.
[28] RYMUT B, KWOLEK B. GPU-supported object tracking using adaptive appearance models and particle swarm optimization[C]//International Conference on Computer Vision and Graphics, Warsaw, Poland, 2010: 227-234.
[29] MUSSI L, IVEKOVIC S, CAGNONI S. Markerless articulated human body tracking from multi-view video with GPU-PSO[C]//9th International Conference on Environmental Systems. York, UK, 2010: 97-108.
[30] NOBILE M S, BESOZZI D, CAZZANIGA P, et al. A GPU-based multi-swarm PSO method for parameter estimation in stochastic biological systems exploiting discrete-time target series[C]//10th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Computational Biology. Málaga, Spain, 2012, 7246: 74-85.
[31] MAGHAZEH A, BORDOLOI UD, ELES P, et al. General purpose computing on low-power embedded GPUs: has it come of age[R]. Linkping University Electronic Press, 2013.
[32] HALLMANS D, SANDSTROM K, LINDGREN M, et al. GPGPU for industrial control systems[C]//2013 IEEE 18th Conference on Emerging Technologies Factory Automation. Cagliari, Italy, 2013: 1-4.
Similar References:

Memo

-

Last Update: 2015-06-16

Copyright © CAAI Transactions on Intelligent Systems