[1]TAN Chao,GUAN Jihong,ZHOU Shuigeng.Incremental and evolutionary manifold learning: a survey[J].CAAI Transactions on Intelligent Systems,2012,7(5):377-388.
Copy

Incremental and evolutionary manifold learning: a survey

References:
[1]LAW M, ZHANG Nan, JAIN A K. Nonlinear manifold learning for data stream[C]//Proceedings of the Fourth SIAM International Conference on Data Mining. Lake Buena Vista, USA, 2004: 3344.
[2]徐蓉,姜峰,姚鸿勋,等.流形学习概述[J].智能系统学报, 2006, 1(1): 4451. 
XU Rong, JIANG Feng, YAO Hongxun, et al.Overview of manifold learning[J].CAAI Transactions on Intelligent Systems, 2006, 1(1): 4451.
[3]SEUNG H, LEE D. The manifold ways of perception[J]. Science, 2000, 290(5500): 22682269.
[4]PEARSON K. On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine, 1901, 2(6): 559572.
[5]TENENBAUM J, DE SILVA V, LANGFORD J. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 23192323.
[6]BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6): 13731396.
[7]ROWEI S, SAUL L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 23232326.
[8]曾宪华,罗四维.动态增殖流形学习算法[J].计算机研究与发展, 2007, 44(9): 14621468. 
ZENG Xianhua, LUO Siwei. A dynamically incremental manifold learning algorithm[J]. Journal of Computer Research and Development, 2007, 44(9): 14621468.
[9]DE SILVA V, TENENBAUM J B. Global versus local methods in nonlinear dimensionality reduction[M]//BECKER S, THRUN S, OBERMAYER K. Advances in Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2003: 721728.
[10]BERGER M, GOSTIAUX B. Differential geometry: manifolds, curves and surfaces[M]. [S.l.]: SpringerVerlag, 1988: 474.
[11]PLESS R, SOUVENIR R. A survey of manifold learning for images[J]. IPSJ Transactions on Computer Vision and Applications, 2009, 1: 8394.
[12]BREGLER C, OMPHUNDRO S M. Nonlinear manifold learning for visual speech recognition[C]//Proceedings of the 5th International Conference on Computer Vision. Washington, DC, USA: IEEE Computer Society, 1995: 494499.
[13]HADID A, KOUROPTEVA O, PIETIKANINEN M. Unsupervised learning using locally linear embedding: experiments in face pose analysis[C]//Proceedings of the 16th International Conference on Pattern Recognition. Quebec City, Canada, 2002: 111114.
[14]JENKINS O C, MATARIC M J. A spatiotemporal extension to Isomap nonlinear dimension reduction[C]//Proceedings of the 21th International Conference on Machine Learning. New York, USA, 2002: 25512556.
[15]〖JP3〗NISKANEN M, SILVEN O. Comparison of dimensionality reduction methods for wood surface inspection[C]//Proceedings of the 6th International Conference on Quality Control by Artificial Vision. Gatlinburg, USA, 2003: 178188.
[16]KRUSKAL J B, WISH M. Multidimensional scaling[M]. Beverly Hills, USA: Sage Publications, 1977.
[17]ZHANG Zhenyue, ZHA Hongyuan. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J]. SIAM Journal of Scientific Computing, 2004, 26(1): 313338.
[18]LU Ke, HE Xiaofei. Image retrieval based on incremental subspace learning[J]. Pattern Recognition, 2005, 38(11): 20472054.
[19]YE Jieping, LI Qi, XIONG Hui, et al. IDR/QR: an incremental dimension reduction algorithm via QR decomposition[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(9): 12081222.
[20]HAN Zhi, MENG Deyu, XU Zongben, et al. Incremental alignment manifold learning[J]. Journal of Computer Science and Technology, 2011, 26(1): 153165.
[21]LI Housen, JIANG Hao, BARRIO R, et al. Incremental manifold learning by spectral embedding methods[J]. Pattern Recognition Letters, 2011, 32(10): 14471455.
[22]KOUROPTEVA O, OKUN O, PIETIKAINEN M. Incremental locally linear embedding algorithm[C]//Proceedings of the 14th Scandinavian Conference Image Analysis. Joensuu, Finland, 2005: 521530.
[23]LAW M H C, JAIN A K. Incremental nonlinear dimensionality reduction by manifold learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(3): 337391.
[24]GOLUB G H, VAN LOAN C F. Matrix computations[M]. Baltimore, USA: Johns Hopkins University Press, 1996: 1694.
[25]SHI Lukui, YANG Qingxin, LIU Enhai, et al. An incremental manifold learning algorithm based on the small world model[C]//Proceedings of the 2010 International Conference on Life System Modeling and Intelligent Computing, and 2010 International Conference on Intelligent Computing for Sustainable Energy and Environment. Wuxi, China, 2010: 324332.
[26]SAUL L K, ROWEIS S T. Think globally, fit locally: unsupervised learning of low dimensional manifolds[J]. Journal of Machine Learning Research, 2003, 4: 119155.
[27]KOUROPTEVA O, OKUN O, PIETIKANEN M. Incremental locally linear embedding[J]. Pattern Recognition, 2005, 38(10): 17641767.
[28]朱明旱,罗大庸,易励群,等.基于正交迭代的增量LLE算法[J].电子学报, 2009, 37(1): 132136. 
ZHU Minghan, LUO Dayong, YI Liqun, et al. Incremental locally linear embedding algorithm based on orthogonal iteration method[J]. Acta Electronica Sinica, 2009, 37(1): 132136.
[29]刘小明.数据降维及分类中的流形学习研究[D].杭州:浙江大学, 2007: 1108. 
LIU Xiaoming. Research on data dimension reduction and manifold learning in classification[D]. Hangzhou: Zhejiang University, 2007: 1108.
[30]LIU Xiaoming, YIN Jianwei, FENG Zhilin, et al. Incremental manifold learning via tangent space alignment[C]//Proceedings of the Second International Conference on Artificial Neural Networks in Pattern Recognition. Ulm, Germany, 2006: 107121.
[31]YIN Jianwei, LIU Xiaoming, FENG Zhilin, et al. A local tangent space alignment based transductive classification algorithm[C]//Proceedings of the Second International Conference on Artificial Neural Networks in Pattern Recognition. Ulm, Germany, 2006: 93106.
[32]JIA Peng, YIN Junsong, HUANG Xinsheng, et al. Incremental Laplacian eigenmaps by preserving adjacent information between data points[J]. Pattern Recognition Letters, 2009, 30(16): 14571463.
[33]ZHAO Dongfang, YANG Li. Incremental isometric embedding of highdimensional data using connected neighborhood graphs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(1): 8698.
[34]ZHAO Dongfang, YANG Li. Incremental construction of neighborhood graphs for nonlinear dimensionality reduction[C]//Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China, 2006: 177180.
[35]VIJAYAKUMAR S, DSOUZA A, SCHAAL S. Incremental online learning in high dimensions[J]. Neural Computation, 2005, 17(12): 26022634.
[36]FRITZKE B. Incremental learning of local linear mappings[C]//Proceedings of the International Conference on Artificial Neural Networks. Paris, France, 1995: 217222.
[37]WANG Yi, LIU Shixia, FENG Jianhua, et al. Mining naturally smooth evolution of clusters from dynamic data[C]//Proceedings of the SIAM International Conference on Data Mining. Minneapolis, USA, 2007: 125134.
[38]AHMED A, XING E. Dynamic nonparametric mixture models and the recurrent Chinese restaurant process: with applications to evolutionary clustering[C]//Proceedings of the SIAM International Conference on Data Mining. Atlanta, USA, 2008: 219230.
[39]SOUVENIR R, PLESS R. Manifold clustering[C]//Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China, 2005: 648653.
[40]CAO Wenbo, HARALICK R. Nonlinear manifold clustering by dimensionality[C]//Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China, 2006: 920924.
[41]XU Rui, WUNSCHLL D. Survey on clustering algorithms[J]. IEEE Transactions on Neural Networks, 2003, 16(3): 645678.
[42]HARTIGAN J A, WONG M A. A kmeans clustering algorithm[J]. Applied Statistics, 1979, 28(1): 100108.
[43]NG A Y, JORDAN M I, WEISS Y. On spectral clustering: analysis and an algorithm[C]//Neural Information Processing Systems: Natural and Synthetic. Vancouver, Canada, 2001: 849856.
[44]CHAKRABARTI D, KUMAR R, TOMKINS A. Evolutionary clustering[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, USA, 2006: 554560.
[45]CHARIKAR M, CHEKURI C, FEDER T, et al. Incremental clustering and dynamic information retrieval[C]//Proceedings of the TwentyNinth Annual ACM Symposium on the Theory of Computing. El Paso, USA, 1997: 626635.
[46]CHI Yun, SONG Xiaodan, ZHOU Dengyong, et al. Evolutionary spectral clustering by incorporating temporal smoothness[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007: 153162.
[47]TANG Lei, LIU Huan, ZHANG Jianping, et al. Community evolution in dynamic multimode networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas, USA, 2008: 677685.
[48]ZHANG Jianwen, SONG Yangqiu, CHEN Gang, et al. Online evolutionary exponential family mixture[C]//Proceedings of International Joint Conference on Artificial Intelligence. Pasadena, USA, 2009: 16101615.
[49]JIA Yangqing, YAN Shuicheng, ZHANG Changshui, et al. Semisupervised classification on evolutionary data[C]//Proceedings of International Joint Conference on Artificial Intelligence. Pasadena, USA, 2009: 10831088.
[50]SANGER T D. Optimal unsupervised learning in a singlelayer linear feedforward neural network[J]. IEEE Transactions on Neural Networks, 1989, 1(2): 459473.
[51]WEINBERGER K Q, SAUL L K. Unsupervised learning of image manifolds by semidefinite programming[J]. International Journal of Computer Vision, 2006, 70(1): 7790.
[52]GOH A, VIDAL R. Segmenting motions of different types by unsupervised manifold clustering[C]//IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007: 16.
[53]GOH A, VIDAL R. Unsupervised riemannian clustering of probability density functions[C]//Proceedings of the 2008 European Conference on Machine Learning and Knowledge Discovery in Databases. Antwerp, Belgium, 2008: 377392.
[54]HE Xiaofei. Incremental semisupervised subspace learning for image retrieval[C]//Proceedings of the 12th Annual ACM International Conference on Multimedia. New York, USA, 2004: 28.
[55]BELKIN M, NIYOGI P. Semisupervised learning on riemannian manifolds[J]. Machine Learning, 2004, 56(1/2/3): 209239.
[56]孟德宇,徐宗本,戴明伟.一种新的有监督流形学习方法[J].计算机研究与发展, 2007, 44(12): 20722077. 
MENG Deyu, XU Zongben, DAI Mingwei. A new supervised manifold learning method[J]. Journal of Computer Research and Development, 2007, 44(12): 20722077.
[57]CHENG Miao, FANG Bin, TANG Yuanyan, et al. Incremental embedding and learning in the local discriminant subspace with application to face recognition[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2010, 40(5): 580591.
[58]XU Ye, SHEN Furao, HASEGAWA Q, et al. An online incremental learning vector quantization[C]//Proceedings of the 13th PacificAsia Conference on Advances in Knowledge Discovery and Data Mining. Bangkok, Thailand, 2009: 10461053.
[59]NING Huazhong, XU Wei, CHI Yun, et al. Incremental spectral clustering by efficiently updating the eigensystem[J]. Pattern Recognition, 2010, 43(1): 113127.
[60]ZHANG Zhenyue, WANG Jing, ZHA Hongyuan. Adaptive manifold learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 253265.
Similar References:

Memo

-

Last Update: 2012-11-13

Copyright © CAAI Transactions on Intelligent Systems