[1]MO Hongwei.Research advance on natural computing[J].CAAI Transactions on Intelligent Systems,2011,6(6):544-555.
Copy

Research advance on natural computing

References:
[1]GONG Maoguo, JIAO Licheng, DU Haifeng, et al. Multiobjective immune algorithm with nondominated neighborbased selection[J]. Evo Comput, 2008, 16(2): 225255.
[2]CHEN Tianhi, TANG Ke, CHEN Guoliang, et al. Analysis of computational time of simple estimation of distribution algorithms[J]. IEEE Trans on Evolutionary Computation, 2010, 14(1): 122.
[3]WANG Y. Differential evolution with composite trial vector generation strategies and control parameters[J]. IEEE Trans on Evolutionary Computation, 2011, 15(1): 5567.
[4]CHEN Weineng, ZHANG Jun, CHUNG H S H, et al. A novel setbased particle swarm optimization method for discrete optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(2): 278300.
[5]崔逊学. 多目标进化算法及其应用[M]. 北京: 国防工业出版社, 2006: 110.
[6]郑金华. 多目标进化算法及其应用[M]. 北京: 科学出版社, 2007: 110.
[7]中国科学技术协会.智能科学与技术学科发展报告[R].北京:中国科学技术出版社, 2010.
[8]马义德, 李廉, 王亚馥, 等. 脉冲耦合神经网络原理及其应用[M]. 北京: 科学出版社, 2006: 125.
[9] ZHOU Z H, WU J X, JIANG Y, et al. Genetic algorithm based selective neural network ensemble[C]//Proc of the 17th International Joint Conference on Artificial Intelligence (IJCAI’01). Seattle, USA, 2001, 2: 797802. 
[10]史忠植. 神经网络[M]. 北京: 高等教育出版社, 2009: 1205.
[11]LIU Y M, CHEN G Q, YING M S. Fuzzy logic, soft computing and computational intelligence[M]. Berlin: SpringerVerlag, 2005: 110.
[12]DORIGO M, MANIEZZO V, COLORNI A. The ant system: optimization by a colony of cooperating agents[J]. IEEE Trans Sys, Man, and Cybernetics,1996, 26(1): 113.
[13]KENNEDY J, EBERHART R. Particle swarm optimization[C]//IEEE Int Conf on Neural Networks. Piscataway, USA, 1995: 19421948.
[14]王磊, 潘进, 焦李成. 基于免疫策略的进化算法[J].自然科学进展, 2000, 10(5): 451455.
?WANG Lei, PAN Jin, JIAO Licheng. Evolutionary algorithm based on immune strategy[J]. Progress of Nature Science, 2000, 10(5): 451455.
[15] HUANG S J. An immunebased optimization method to capacitor placement in a radial distribution system[J]. IEEE Trans on Power Delivery, 2000(15): 744749.
[16]DURHAM W. Coevolution: genes, culture, and human diversity[M]. Palo Alto, USA: Stanford University Press, 1994: 3545.
[17]ADLEMAN L M. Molecular computation of solutions to combinatorial problems[J]. Science, 1994, 226(11): 10211024.
[18] PAUN A, PAUN G. The power of communication: p systems with symport/antiport[J]. New Generation Computing, 2002, 20(3): 295305.
[19] PAUN G. Membrane computing: an introduction[M]. Berlin: SpringerVerlag, 2002: 110.
[20] ONG Y S, LIM M H, CHEN X S. Memetic computation:past, present & future[J]. IEEE Computational Intelligence Magazine, 2010(5): 2432.
[21]SHI Y, EBERHART R. Evolutionary computation proceedings[C]//IEEE World Congress on Compu Intel. New York, USA, 1998: 6973.
[22]莫宏伟,左兴权,毕晓君.人工免疫系统研究进展[J].智能系统学报, 2009, 4(1): 2329.
MO Hongwei, ZUO Xingquan, BI Xiaojun. Research on development of artificial immune systems[J].CAAI Transations on Intelligent Systems, 2009, 4(1): 2329.
[23]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式鱼群算法[J].系统工程理论与实践, 2002, 22(11): 3238.
LI Xiaolei, SHAO Zhijiang, QIAN Jixin. A fish school optimization algorithm based on animal autonomous[J]. Theory and Practice of System Engineering, 2002, 22(11): 3238.
[24] BASTOS F, CARMELO J A, LIMA N, De FERNANDO B. A novel search algorithm based on fish school behavior[C]//2008 IEEE Int Conf on Systems, Man, and Cybernetics(SMC 2008). Singapore, 2002, 22(11): 3238.
[25] MELLER S, MARCHETTO J, AIRAGHI S, KOUMOUTSAKOS P. Optimization based on bacterial chemotaxis[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 1629.
[26] TERESHKO V. Reactiondiffusion model of a honeybee colony’s foraging behaviour[J]. Parallel Problem Solving from Nature, 2000,Computer Science, 2000, 1917: 807816.
[27]SIMON D. Biogeographybased optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(6): 702713.
[28] DAI Chaohua, ZHU Yufeng, CHEN W R. Seeker optimization algorithm: a novel stochastic search algorithm for global numerical optimization[J]. Journal of Systems Engineering and Electronics, 2011, 21(2): 300311.
[29]YANG Yan, ZHOU Yongquan, GONG Qiaoqiao. Hybrid artificial glowworm swarm optimization algorithm for solving system of nonlinear equations[J]. Journal of Computational Information Systems, 2010, 6(10): 34313438.
[30]MEHRABIAN A R, LUCAS C. A novel numerical optimization algorithm inspired from weed colonization[J]. Ecological Informatics, 2006(1): 355366.
[31]YANG Shuyuan, WANG Min, JIAO Licheng. Quantum particle swarm optimization[C]//Proc of IEEE Congress on Evolution Computation. Washington, DC, USA, 2004: 320324.
[32]YUCHI M, KIM J H. Ecologyinspired evolutionary algorithm using feasibilitybased grouping for constrained optimization[C]//Proc of the IEEE Congress on Evolutionary Computation. Edinburgh, UK, 2005: 14551461.
[33]JADERICK P P, MICHAEL J M, MENDOZA M,et al. Solving symmetric and asymmetric TSPs by artificial chemistry[C]//Philippine Computing Science Congress. Philippine, 2004: 17.
[34]PATON R. Computing with biological metaphors[M]. London: Chapman & Hall, 2001: 15.
[35]KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671680.
[36]SHOR P W. Algorithm for quantum computation:discrete logarithms and factoring[C]//Proc of 35th Annual Symposium on Foundations of Computer Science. New Mexico, USA: IEEE Computer Society Press, 1994: 124134.
[37]TAYARANI M H N, AKBARZADEH M R T. Magnetic optimization algorithms a new synthesis[C]//IEEE Congress on Evolutionary Computation. Hong Kong, China, 2008: 26592665.
[38]De CASTRO L N. Fundamentals of natural computing[M]. Champman & Hall/CRC. Florida, USA, 2006: 320.
[39] BONABEAU E, DORIGO M, THERAULAZ G. Swarm intelligence: from natural to artificial systems[M]. New York, USA: Oxford University Press, 1999: 215.
[40]MELLER S, MARCHETTO J, AIRAGHI S, KOUMOUTSAKOS P. Optimization based on bacterial chemotaxis[J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 1629.
[41]PASSINO K M. Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control Syst Mag, 2002, 22(3): 5267.
[42]TANG W J, WU Q H, SAUNDERS J R. A novel model for bacteria foraging in varying environments[C]//Proc ICCSA. Berlin, SpringerVerlag, 2006: 556565.
[43]ACHARYA D P, PANDA G, MISHRA S,et al. Bacteria foraging based independent component analysis[C]//Proc Int Conf Comput Intell Multimedia Applicat. Piscataway, USA: IEEE Press, 2007: 527531.
[44]DASGUPTA S, ABRAHAM D A. Adaptive computational chemotaxis in bacterial foraging optimization: an analysis[J]. IEEE Tran on Evo Comput, 2009, 13(4): 919942.
[45]KIM D H, ABRAHAM A, CHO J H. A hybrid genetic algorithm and bacterial foraging approach for global optimization[J]. Inform Sci, 2007, 177(18): 39183937.
[46]MISHRA S. A hybrid least squarefuzzy bacterial foraging strategy for harmonic estimation[J]. IEEE Trans Evol Comput, 2005, 9(1): 6173.
[47]BISWAS A, DASGUPTA S, DAS S, ABRAHAM A. Synergy of PSO and bacterial foraging optimization: a comparative study on numerical benchmarks[C]//Proc 2nd Int Symp Hybrid Artificial Intell Syst (HAIS)Advances Soft Computing Ser. [S.l.], SpringerVerlag, ASC, 2007: 255263.
[48]PASSINO K M. Biomimiery of bacterial foraging for distributed optimization and control[J]. IEEE Control System Magazine, 2002(6): 5267.
[49]MAJHI R, PANDA G, SAHOO G. Efficient prediction of stock market indices using adaptive bacterial foraging optimization(ABFO)and BFO based techniques[J]. Expert Systems with Applications, 2009, 36 (6): 1009710104.
[50]LI M S, TANG W J, TANG W H, et al. Bacteria foraging algorithm with varying population for optimal power fow[C]//Proc Applications of Evolutionary Computing 2007. Berlin, SpringerVerlag, 2007: 3241.
[51]MO Hongwei, YIN Yujing. Image segmentation based on bacterial foraging and FCM algorithm[J]. International Journal of Swarm Intelligence Research, 2011, 2(3): 1629. 
?[52]李威武,王慧,邹志君,等.基于细菌群体趋药性的函数优化方法[J].电路与系统学报, 2005, 10(1): 5863.
?LI Weiwu, WANG Hui, ZOU Zhijun, et al. Function optimization based on bacterial chemotaxis[J]. Journal of Electrical Circuit and System, 2005, 10(1): 5863.
[53]吕慧显. 基于微细菌群体趋药性的函数优化算法[J]. 青岛大学学报:工程技术版, 2009, 24(1): 1926.
Lv Huixian. Function optimization based on micro bacterial chemotaxis[J]. Journal of Qingdao University: Engineering, 2009, 24(1): 1926.
[54]曹黎侠,张建科.细菌趋药性算法理论及应用研究进展[J]. 计算机工程与应用, 2006, 42(1): 4446.
CAO Lixia, ZHANG Jianke. Research development of theory and application of bacterial chemotaxis algorithm[J]. Computer Engineering and Application, 2006, 42(1): 4446.
[55]张煜东,吴乐南.多态细菌趋药性优化[J]. 计算机工程与应用, 2009, 45(18): 611.
ZHANG Yudong, WU Lenan. Multimodal bacterial chemotaxis optimization[J]. Computer Engineering and Application, 2009, 45(18): 611.
[56]TERESHKO V. Reactiondiffusion model of a honeybee colony’s foraging behaviour[M]. Berlin:SpringerVerlag, 2000: 807816.
[57]TERESHKO V, LEE T. How information mapping patterns determine foraging behaviour of a honeybee colony[J]. Open Systems and Information Dynamics, 2002(9): 181193.
[58]TERESHKO V, LOENGAROV A. Collective decisionmaking in honeybee foraging dynamics[J]. Computing and Information systems Journal, 2005, 9(3): 17.
[59]TEODOROVIC D. Transport modeling by multiagent systems: a swarm intelligence approach[J]. Transportation Planning and Technology, 2003, 26(4): 289312.
[60]LUCIC P, TEODOROVIC D. Transportation modeling: an artificial life approach[C]//ICTAI, Washington, DC, USA, 2002: 216223.
[61]PHAM D T, GHANBARZADEH A, KOC E, et al. The bees algorithm—a novel tool for complex optimisation problems[C]//Proceedings of the 2nd Virtual International Conference on Intelligent Production Machines and Systems (IPROMS 2006). Cardiff, UK: Elsevier, 2006: 454459.
[62]DRIAS H, SADEG S, YAHI S. Cooperative bees swarm for solving the maximum weighted satisfiability problem, computational intelligence and bioinspired systems[C]//8th International Workshop on Artificial Neural Networks (IWANN 2005). Vilanova, Barcelona, Spain, 2005: 810.
[63]BENATCHBA K, ADMANE L, KOUDIL M. Using bees to solve a datamining problem expressed as a maxsat one[C]//First International WorkConference on the Interplay Between Natural and Artificial Computation (IWINAC 2005). Palmas, Canary Islands, Spain, 2005: 1518.
[64]WEDDE H F, FAROOQ M, ZHANG Y. Beehive: an efficient faulttolerant routing algorithm inspired by honeybee behavior, ant colony, optimization and swarm intelligence[C]//4th International Workshop ANTS 2004. Brussels, Belgium, 2004: 58.
[65]YANG X S. Engineering optimizations via natureinspired virtual bee algorithms[C]//Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach, Lecture Notes in Computer Science.Berlin/Heidelberg: SpringerVerlag. 2005, 3562: 317323.
[66]PHAM D T, GHANBARZADEH A, KOC E, et al. The bees algorithm[R].[S.l.], Manufacturing Engineering Centre, Cardiff University, 2005.
[67]KARABOGA D. An idea based on honeybee swarm for numerical optimization TR06[R]. [S.l.], Computer Engineering Department, Engineering Faculty, Erciyes University, 2005.
[68]BASTURK B, KARABOGA D. An artificial bee colony (ABC) algorithm for numeric function optimization[C]//IEEE Swarm Intelligence Symposium 2006. Indianapolis, USA, 2006: 4550.
[69]KARABOGA D, BASTURK B A. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3): 459471.
[70]KARABOGA D, BASTURK B. On the performance of artificial bee colony (abc) algorithm[J]. Applied Soft Computing, 2008, 8(1): 687697.
[71]〖JP3〗KARABOGA D, BASTURK B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems[M]. Berlin:SpringerVerlag, 2007: 789798.
[72]KARABOGA D, AKAY B B, OZTURK C. Artificial bee colony (ABC) optimization algorithm for training feedforward neural networks[C]//Modeling Decisions for Artificial Intelligence. Berlin: SpringerVerlag, 2007: 318329.
[73]KARABOGA D, AKAY B B. An artificial bee colony (ABC) algorithm on training artificial neural networks[C]//15th IEEE Signal Processing and Communications Applications. Eskisehir, Turkey, 2007: 14.
[74]KARABOGA N. A new design method based on artificial bee colony algorithm for digital IIR filters[J]. Journal of The Franklin Institute, 2009, 346 (4): 328348.
[75]ALOK S. An artificial bee colony algorithm for the leafconstrained minimum spanning tree problem[J]. Applied Soft Computing, 2009, 9(2): 625631.
[76]DERVIS K, BAHRIYE A. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009(214): 108132.
[77]ERGEZER M, SIMON D, DU Dawei. Oppositional biogeographybased optimization[J]. Journal of Systems, Man, and Cybernetics, 2009, 39(5): 10351040.
[78]MA Haiping. An analysis of the behavior of migration models for biogeographybased optimization[J]. Information Sciences, 2010, 180(18): 34443464.
[79]GONG Wenyin, CAI Zhihua, LING Charlexin,et al. A realcoded biogeographybased optimization with neighborhood search operator[J]. Applied Mathematics and Computation, 2010, 216(9): 27492758.
[80]DU D W, SIMON D, ERGEZER M. Biogeographybased optimization combined with evolutionary strategy and immigration refusal[C]//Proc of the IEEE Conference on Systems, Man, and Cybernetics. SanAntonio, Texas,2005: 10231028. 
[81]GONG Wenyin, CAI Zhihua, LING Ccharlexin. DE/BBO: a hybrid differential evolution with biogeographybased optimization for global numerical optimization[J].Soft Computing, 2011, 5(4): 645665.
[82]MA H, NI S, SUN M. Equilibrium species counts and migration model tradeoffs for biogeographybased optimization[C]//Proc of the IEEE Conference on Decision and Control. Shanghai, China, 2009: 33063310.
[83]SIMON D. A probabilistic analysis of a simplified biogeographybased optimization algorithm[EB/OL].[20090211]. http: //academic.csuohio.edu/simond/bbo/ simplified. 
[84] SIMON D, ERGEZER M, DU D. Population distributions in biogeographybased optimization algorithms with elitism[C]//Proc of the IEEE Conference on Systems, Man, and Cybernetics. San Antonio, USA, 2009: 10171022.
[85] SINGH U, KUMAR H, KAMAL T S. Linear array synthesis using biogeography based optimization[J]. Progress in Electromagnetics Research, 2010, 11: 2537. 
[86]TAN Lixiang, GUO Li. Quantum and biogeography based optimization for a class of combinatorial optimization[C]//GEC’09.[S.l.], 2009: 969972.
[87]NAVDEEP K, JOHAL S, KUNDRA S H. A hybrid FPAB/BBO algorithm for satellite image classification[J]. International Journal of Computer Applications, 2010, 6(5): 3136.
[88]ANIRUDDHA B, CHATTOPADHYAY P K. Solving complex economic load dispatch problems using biogeographybased optimization[J]. Expert Systems with Applications, 2010, 37(5): 36053615. 
[89]MO Hongwei, XU Lifang. Biogeography migration algorithm for traveling salesman problem[J]. International Journal of Intelligent Computing and Cybernetics, 2011, 4(3): 311330.
[90]PAN Yongxin, LIN Wei, LI Jinhua, et al. Reduced efficiency of magnetotaxis in magnetotactic coccoid bacteria in higher than geomagnetic fields[J]. Biophysical Journal, 2009, 97: 986991.
[91]PAUN G, ROZENBERG G, SALOMAA A. DNA computing:new computing paradigms[M]. Berlin: SpringerVerlag, 1998: 112.
[92]FRANCOA G, MARGENSTERN M. A DNA computing inspired computational model[J]. Theoretical Computer Science, 2008(404): 8896.
[93]RAMAKRISHNAN N, BHALLA U S, TYSON J J. Computing with proteins[J]. Computer, 2009, 42(1): 4756.
[94]TRINCA?D, RAJASEKARAN S. Coping with diffraction effects in proteinbased computing through a specialized approximation algorithm with constant overhead[C]//2010 10th IEEE Conference on Nanotechnology (IEEENANO).Seoul, Korea, 2010: 802805.
[95]PANCHENKOA, PRZYTYCKA T. Proteinprotein interactions & networks[M]. Computing Methods for Identification, Analysis & Prediction. Berlin: Springer, 2010: 610. 
[96]EICHELBERGER C N, NAJARIAN K. Simulating protein computing: character recognition via probabilistic transition trees[C]//IEEE International Conference on Granular Computing.[S.l.], 2006: 101105.
[97]HENKEL V C, RENO S B, CRINA I A, et al. Protein output for DNA computing[J]. Natural Computing, 2005, 4(1): 110.
[98]ANDY A. Molecular computing:aromatic arithmetic[J]. Nature Physics, 2010, 6: 325326.
[99]HAMEL J S. A thermodynamic turing machine: artificial molecular computing using classical reversible logic Switching networks[EB/OL].[20101125].http://arxiv.org/abs/0904.3273.3273v2, 2009.
[100]PAUN G, ROZENBERG G, SALOMAA A. DNA computingnew computing paradigms[M]. Berlin: SpringerVerlag, 1998: 39.
[101]GARCAQUISMONDO M, GUTIERREZESCUDERO R, PEREZHURTADO I, et al. An overview of PLingua 2.0[J]. Lecture Notes in Computer Science, 2010(5957): 264288.
[102]CHRISTINAL H A, DIAZPERNIL D, REAL P. Segmentation in 2D and 3D image using tissuelike P system[J]. Lecture Notes in Computer Science, 2009(5856): 169176.
[103]ESCUELA G, HINZE T, DITTRICH P, et al. Modelling modified atmosphere packaging for fruits and vegetables using membrane systems[C]//Proc of the Third International Conference on Bioinspired Systems and Signal Processing. Valencia,Spain: INSTICC Press, 2010: 306311.
[104]ZHAO J , WANG N. A bioinspired algorithm based on membrane computing and its application to gasoline blending scheduling[J]. Computers and Chemical Engineering, 2011, 35(2): 272283.
[105]PAUN G. A quick introduction to membrane computing[J]. The Journal of Logic and Algebraic Programming, 2010(79): 291294.
[106]LAM A Y S, LI V O K. Chemicalreactioninspired metaheuristic for optimization[J]. IEEE Trans on Evolutionary Computation, 2010, 14(3): 381400.
Similar References:

Memo

-

Last Update: 2012-02-29

Copyright © CAAI Transactions on Intelligent Systems