[1]ZHANG Xiu-ling,LI Shao-qing,TIAN Li-yong.Research of flatness pattern recognition based on the Elman neural network[J].CAAI Transactions on Intelligent Systems,2010,5(5):449-453.[doi:10.3969/j.issn.1673-4785.2010.05.012]
Copy

Research of flatness pattern recognition based on the Elman neural network

References:
[1]王国栋.板形控制和板形理论[M].北京:冶金工业出版社, 1980: 1-11.
[2]魏剑平,李华德,余达太,等.基于回归神经网络的复杂工业对象的建模[J].北京科技大学学报, 1999, 21(4): 406-408.
WEI Jianping, LI Huade, YU Datai, et al. Modeling for a complicated industrial object based on recurrent neural network[J]. Journal of University of Science and Technology Beijing, 1999, 21(4): 406-408.
[3]GE Hongwei, QIAN Feng, LIANG Yanchun, et al. Identification and control of nonlinear systems by a dissimilation particle swarm optimizationbased Elman neural network[J]. Nonlinear Analysis: Real World Applications, 2008, 9: 1345-1360.
[4]张秀玲.冷带轧机板形智能识别与智能控制研究[D].秦皇岛:燕山大学, 2002: 36-39.
ZHANG Xiuling. Research on intelligent control and recognition of flatness for cold strip mill [D]. Qinhuangdao: Yanshan University, 2002: 36-39.
[5]周会峰.板形识别预测和控制仿真的智能方法研究[D].秦皇岛:燕山大学, 2005: 38-39.
ZHOU Huifeng. Research on intelligent methods of flatness recognition prediction and control simulation[D]. Qinhuangdao: Yanshan University, 2005: 38-39.
[6]谢庆国,万淑芸,赵金.一种 Elman 回归网络的设计方法[J].华中科技大学学报:自然科学版, 2002, 30(3): 22-24.
XIE Qingguo, WAN Shuyun, ZHAO Jin. A systemic design for Elman recurrent network[J]. Journal of Huazhong University of Science and Technology: Nature Science Edition, 2002, 30(3): 22-24.
[7]HAGIWARA K, FUKUMIZU K. Relation between weight size and degree of over-fitting in neural network regression[J]. Neural Networks, 2008, 21: 48-58.
[8]魏海坤.神经网络结构设计的理论与方法[M].北京:国防工业出版社, 2005: 97-99.
[9]陈跃华,曹广益,朱新坚. PEMFC的 Elman 神经网络建模与模糊神经网络控制[J].能源技术, 2005, 26(4): 146-149.
CHEN Yuehua, CAO Guangyi, ZHU Xinjian. Elman neural network modeling and adaptive fuzzy control of PEMFC [J]. Energy Technology, 2005, 26(4): 146-149.
Similar References:

Memo

-

Last Update: 2010-11-26

Copyright © CAAI Transactions on Intelligent Systems