[1]CUI Wanqiu,DU Junping,ZHOU Nan,et al.Social network cross-media searching and mining based on user intention[J].CAAI Transactions on Intelligent Systems,2017,12(6):761-769.[doi:10.11992/tis.201706075]

Social network cross-media searching and mining based on user intention

[1] XIE H, LI X, WANG T, et al. Personalized search for social media via dominating verbal context[J]. Neurocomputing, 2016, 172(C): 27-37.
[2] LI J, LIU C, YU J X, et al. Personalized influential topic search via social network summarization[J]. IEEE transactions on knowledge and data engineering, 2016, 28(7): 1820-1834.
[3] KOU F, DU J, HE Y, et al. A survey on social network search based on semantic analysis and learning[J]. CAAI transactions on intelligence technology, 2016(1): 293-302.
[4] 石磊, 杜军平, 周亦鹏, 等. 在线社交网络挖掘与搜索技术研究[J]. 智能系统学报, 2016, 11(6): 777-787.
SHI Lei, DU Junping, ZHOU Yipeng, et al. A survey on online social network mining and search[J]. CAAI transactions on intelligence technology, 2016, 11(6): 777-787.
[5] DEUFEMIA V, GRANATELLO M, MEROLA A, et al. Comparing classifiers for web user intent understanding[J]. Empowering organizations, 2016, 11(2): 147-159.
[6] CHRISTOPH K, MARTHA L, ALAN H. User intent in multimedia search: a survey of the state of the art and future challenges[J]. ACM computing surveys, 2016, 49(2): 1-37.
[7] KATO M. Web search query privacy, an end-user perspective[J]. Journal of information security, 2017, 8(1): 56-74.
[8] RISHIRAJ S R, RAHUL K, NILOY G, et al. Discovering and understanding word level user intent in web search queries[J]. World wide web, 2015, 30: 22-38.
[9] JIN Y K, MARK C, JAIME T, et al. Understanding how people interact with web search results that change in real-time using implicit feedback[C]//The 22nd ACM International Conference on Information and Knowledge Management. San Francisco, USA, 2014: 2321-2326.
[10] CHRISTOPH K, SUBHABRATA B, MARTHA L, et al. Uploader intent for online video: typology, inference and applications[J]. IEEE transactions on multimedia, 2015, 17(8): 1200-1212.
[11] ZHENG Y, CAPRA L, WOLFSON O, et al. Urban computing: concepts, methodologies and applications[J]. ACM transactions on intelligent systems and technology, 2014, 5(3): 38.
[12] ZHENG Y, LIU T, WANG Y, et al. Diagnosing new york city’s noises with ubiquitous data[C]//Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. Seattle, Washington, 2014: 715-725.
[13] ZHENG Y. Trajectory data mining: an overview[J]. ACM transactions on intelligent systems and technology, 2015, 6(3): 29.
[14] SONG S, LI Q, ZHENG N. A spatio-temporal framework for related topic search in micro-blogging[C]//International Conference on Active Media Technology. Springer Berlin Heidelberg, 2010: 63-73.
[15] SONG S, LI Q, BAO H. Detecting dynamic association among twitter topics[C]//International Conference on World Wide Web. Lyon, France, 2012: 605-606.
[16] LIU A A, SU Y T, NIE W Z, et al. Hierarchical clustering multi-task learning for joint human action grouping and recognition[J]. IEEE trans pattern anal mach intell, 2017, 39(1): 102-114.
[17] CUI P, WANG F, YANG S, et al. Item-Level Social Influence Prediction with Probabilistic Hybrid Factor Matrix Factorization[C]//AAAI Conference on Artificial Intelligence 2011. San Francisco, USA, 2011: 34-45.
[18] CRANSHAW J, TOCH E, HONG J, et al. Bridging the gap between physical location and online social networks[C]//ACM International Conference on Ubiquitous Computing. Copenhagen, Denmark, 2010: 119-128.
[19] 余丽, 陆锋, 张恒才. 网络文本蕴涵地理信息抽取: 研究进展与展望[J]. 地球信息科学学报, 2015, 17(2): 127-134.
YU Li, LU Feng, ZHANG Hengcai. Extracting geographic information from web texts: status and development[J]. Journal of geo-information science, 2015, 17(2): 127-134.
[20] 王宇. 基于网络文本的地名空间模糊建模[D]. 南京: 南京师范大学, 2012.
WANG Yu. A dissertation submitted in partial fulfillment of the requirements for the degree of master of science[D]. Nanjing: Nanjing Normal University, 2012.
[21] JIN T, LI L, LI P, et al. Hidden conditional random fields for category and scene classification[J]. Journal of computational information systems, 2012, 8(2): 877-885.
[22] CHIEN B C, SHI H T, FU C H, et al. Automatic geotagging for personal photos with sharing images on social media networks[C]//Multidisciplinary Social Networks Research. Berlin: Springer Berlin Heidelberg, 2015: 495-508.
[23] SENGSTOCK C, GERTZ M. Latent geographic feature extraction from social media[C]//Proceedings of the 20th ACM International Conference on Advances in Geographic Information Systems. New York, USA, 2012: 149-158.
[24] HONG L, DAVISON B D. Empirical study of topic modeling in Twitter[C]//Proceedings of the ACM First Workshop on Social Media Analytics. Washington D C, USA, 2010: 80-88.
[25] SONG S, LI Q, ZHENG X. Detecting popular topics in micro-blogging based on a user interest-based model[J]. The complex system of management and control of state key laboratory, 2012(IJCNN): 1-8.
[26] ZHENG N, SONG S, BAO H. A temporal-topic model for friend recommendations in Chinese microblogging systems[J]. IEEE transactions on systems, man, and cybernetics: systems, 2015, 45(9): 1245-1253.
[27] BAO H, LI Q, LIAO S S, et al. A new temporal and social pmf-based method to predict users’ interests in micro-blogging[J]. Decision support systems, 2013, 55(3): 698-709.
[28] GAO H, LI Q, BAO H, et al. How shall we catch people’s concerns in micro-blogging[C]//Proceedings of the 21st ACM International Conference on World Wide Web. Lyon, France, 2012: 505-506.
[29] WANG Y, WANG X, DU J, et al. Object detection based on exemplar object expression[M]. Advanced Multimedia and Ubiquitous Engineering. Springer Berlin Heidelberg, 2015.
[30] WANG X, DU J, WU S. High-level semantic image annotation based on hot internet topics[J]. Multimedia tools and applications, 2015, 74(6): 2055-2084.
[31] WU L, GE Y, LIU Q, et al. Modeling the evolution of users’ preferences and social links in social networking services[J]. IEEE transactions on knowledge and data engineering, 2017 (99): 1-1.
[32] LIANG M, DU J, LIU H. Self-adaptive spatial image denoising model based on scale correlation and sure-let in the nonsubsampled contourlet transform domain[J]. Science China-information sciences, 2014, 57(9): 1-15.
[33] WANG X, DU J, WU S, et al. Cluster ensemble-based image segmentation[J]. International journal of advanced robotic systems, 2013, 10(4): 1-11.
[34] 欧阳逸, 郭斌, 何萌, 等. 微博事件感知与脉络呈现系统. 浙江大学学报: 工学版, 2016, 50(6): 1176-1182.
OUYANG Yi, GUO Bin, HE Meng, et al. Event sensing and vein presentation leveraging microblog[J]. Journal of Zhejiang university: engineering science, 2016, 50(6): 1176-1182.
[35] 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600.
LIU Jiao, LI Yang, DUAN Hong, et al. Knowledge graph construction technique[J]. Journal of computer research and development, 2016, 53(3): 582-600.
[36] BALAID A, ABD R M Z, HIKMI S N, et al. Knowledge maps[J]. International journal of information management, 2016, 36(3): 451-475.
[37] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. Computer science, 2013, 2(12): 27-35.
[38] WU W, LI H, WANG H, et al. Probase: a probabilistic taxonomy for text understanding[C]//ACM SIGMOD International Conference on Management of Data. Scottsdale, USA, 2012: 481-492.
[39] HUA W, WANG Z, WANG H, et al. Short text understanding through lexical-semantic analysis[C]//International Conference on Data Engineering. Seoul, South Korea, 2015: 495-506.
[40] DAVID M, BLEI M I, JORDAN. Modeling annotated data[C]//Proceedings of 2003 ACM International Conference on Research on Development in Information Retrieval. Toronto: ACM Press, 2003: 1-8.
[41] BIAN J, YANG Y, CHUA T S. Multimedia summarization for trending topics in microblogs[C]//Proceedings of ACM International Conference on Information and Knowledge Management. San Francisco: ACM Press, 2013: 1807-1812.
[42] 王智愚. 社会化多媒体内容分析与摘要[D]. 北京: 清华大学, 2013: 1-119.
WANG Zhiyu. Social multimedia analysis and summarization[D]. Beijing: Tsinghua University, 2013: 1-119.
[43] WANG Y, WU F, SONG J, et al. Multi-modal mutual topic reinforce modeling or cross-media retrieval[C]//Proceedings of 2014 ACM International Conference on Multimedia. Orlando: ACM Press, 2014: 307-316.
[44] KANG C, XIANG S, LIAO S, et al. Learning consistent feature representation for cross-modal multimedia retrieval[J]. IEEE transactions on multimedia, 2015, 17(3): 370-381.
[45] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2012: 1097-1105.
[46] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Arxiv preprint, arxiv, 2014: 1409-1556.
[47] ANDREJ K, ARMAND J, LI F. Deep fragment embeddings for bidirectional image sentence mapping[J]. Arxiv Preprint, Arxiv, 2014, 14(3): 1406-5679.
[48] AMIRHOSSEIN H, THOMAS M, CEES G, et al. Discovering semantic vocabularies for cross-media retrieval [C]//Proceedings of ACM SIGMM International Conference on Multimedia Retrieval. Shanghai: ACM Press, 2015: 131-138.
[49] JIANG XY, WU F, LI X, et al. Deep compositional cross-modal learning to rank via local-global alignment[C]//Proceedings of 2015 ACM International Conference on Multimedia. Brisbane, 2015: 69-78.
[50] MA L, LU ZD, SHANG LD, et al. Multimodal convolutional neural networks for matching image and sentence[C]//Proceedings of 2015 International Conference on Computer Vision. Boston, USA, 2015: 2623-2631.
[51] ZHAO F, HUANG Y, WANG L, et al. Deep semantic ranking based hashing for multi-label image retrieval[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 1556-1564.
[52] WANG J, SONG Y, LEUNG T, et al. Learning fine-grained image similarity with deep ranking[C]//IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2014: 1386-1393.
[53] REN S, GIRSHICK R, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[54] QIAN SS, ZHANG TZ, HONG R, et al. Cross-domain collaborative learning in social multimedia[C]//Proceedings of 2015 ACM International Conference on Multimedia. Brisbane: ACM Press, 2015: 99-108.
[55] 柯圣财, 赵永威, 李弼程, 等. 基于卷积神经网络和监督核哈希的图像检索方法[J]. 电子学报, 2017, 45(1): 157-163.
KE Shengcai, ZHAO Yongwei, LI Bicheng, et al. Image retrieval based on convolutional neural network and kernel-based supervised hashing[J]. Acta electronica sinica, 2017, 45(1): 157-163.
[56] 贾焰, 甘亮, 李爱平, 等. 社交网络智慧搜索研究进展与发展趋势[J]. 通信学报, 2015, 36(12): 9-16.
JIA Yan, GAN Liang, LI Aiping, et al. Research progress and development trend of onfine social network smart search[J]. Journal on communications, 2015, 36(12): 9-16.
[57] PARK K, JEE H, LEE T, et al. Automatic extraction of user’s search intention from web search logs[J]. Multimedia tools and applications, 2012, 61(1): 1-18.
[58] GUPTA V, GARG N, GUPTA T. Search bot: search intention based filtering using decision tree based technique[C]//Third IEEE International Conference on Intelligent Systems, Modelling and Simulation. Kota Kinabalu, Malaysia, 2012: 49-54.
[59] 王大玲, 于戈, 鲍玉斌, 等. 基于用户搜索意图的Web网页动态泛化[J]. 软件学报, 2010, 21(5): 1083-1097.
WANG Daling, YU Ge, BAO Yubin, et al. Dynamically generalizing Web pages based on users’ search intentions [J]. Journal of software, 2010, 21(5): 1083-1097.
[60] FAN W, LI J, MA S, et al. Graph homomorphism revisited for graph matching[C]//Proceedings of the VLDB Endowment, 2010, 3(1/2): 1161-1172.
[61] 郑炜, 梁战平, 梁建. 面向用户意图的智能搜索引擎框架研究[J]. 现代图书情报技术, 2014, 30(3): 65-72.
ZHENG Wei, LIANG Zhanping, LIANG Jian. Research on user oriented intelligent search engine framework[J]. Library and information science, 2014, 30(3): 65-72.
[62] BENNETT P N, WHITE R W, CHU W, et al. Modeling the impact of short- and long-term behavior on search personalization[C]//Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieva. Portland, USA, 2012: 185-194.
[63] CHILTON L B, TEEVAN J. Addressing people’s information needs directly in a web search result page[C]//ACM International Conference on World Wide Web. Hyderabad, India, 2011: 27-36.
[64] CHIKERSAL P, PORIA S, CAMBRIA E, et al. Modelling public sentiment in twitter: using linguistic patterns to enhance supervised learning[C]//International Conference on Intelligent Text Processing and Computational Linguistics. Cairo, Egypt, 2015: 49-65.
[65] SMAILOVIC J, KRANJC J, GRCAR M, et al. Monitoring the Twitter sentiment during the Bulgarian elections[C]//IEEE International Conference on Data Science and Advanced Analytics. Paris, France, 2015:1-10.
[66] MANOS S, SYMEON P, GEORGIOS P, et al. Multimodal event detection and summarization in large scale image collections[C]//Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval. New York, USA, 2016: 421-422.
[67] GAO Y, ZHAO S, YANG Y, et al. Multimedia social event detection in microblog[M]//Multimedia Modeling. Springer International Publishing, 2015: 269-281.
[68] UNANKARD S, LI X, SHARAF M. Emerging event detection in social networks with location sensitivity[J]//World wide web-internet and web information systems, 2014, 18(5): 1-25.
[69] YANG Y, DU J, HE B. A novel ontology-based semantic retrieval model for food safety domain[J]. Chinese journal of electronics, 2013, 22(2): 247-252.
Similar References:



Last Update: 2018-01-03

Copyright © CAAI Transactions on Intelligent Systems