[1]HU Jinming,HU Xiaofeng,SHI Lei,et al.Method of unauthorized intrusion scenario simulation in super high-rise building based on reinforcement learning[J].CAAI Transactions on Intelligent Systems,2025,20(4):958-968.[doi:10.11992/tis.202408002]
Copy

Method of unauthorized intrusion scenario simulation in super high-rise building based on reinforcement learning

References:
[1] 中华人民共和国住房和城乡建设部. 安全防范工程通用规范: GB 55029—2022[S]. 北京: 中国计划出版社, 2022.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. General code of security engineering: GB 55029—2022[S]. Beijing: China Planning Press, 2022.
[2] HUANG He, HU Hao, XU Feng, et al. Skeleton-based automatic assessment and prediction of intrusion risk in construction hazardous areas[J]. Safety science, 2023, 164: 106150.
[3] LI Heng, DONG Shuang, SKITMORE M, et al. Intrusion warning and assessment method for site safety enhancement[J]. Safety science, 2016, 84: 97-107.
[4] ARSLAN M, CRUZ C, GINHAC D. Visualizing intrusions in dynamic building environments for worker safety[J]. Safety science, 2019, 120: 428-446.
[5] 王润芳, 陈增强, 刘忠信. 融合朴素贝叶斯方法的复杂网络链路预测[J]. 智能系统学报, 2019, 14(1): 99-107.
WANG Runfang, CHEN Zengqiang, LIU Zhongxin. Link prediction in complex networks with syncretic naive Bayes methods[J]. CAAI transactions on intelligent systems, 2019, 14(1): 99-107.
[6] GUO Kai, ZHANG Limao, WU Maozhi. Simulation-based multi-objective optimization towards proactive evacuation planning at metro stations[J]. Engineering applications of artificial intelligence, 2023, 120: 105858.
[7] 李冰, 杨薪玉, 王延锋. 轨道交通车站乘客集散系统Anylogic仿真优化[J]. 智能系统学报, 2020, 15(6): 1049-1057.
LI Bing, YANG Xinyu, WANG Yanfeng. Simulation and optimization of the passenger distribution system Anylogic in rail transit stations[J]. CAAI transactions on intelligent systems, 2020, 15(6): 1049-1057.
[8] HOSSEINI S, IVANOV D. Bayesian networks for supply chain risk, resilience and ripple effect analysis: a literature review[J]. Expert systems with applications, 2020, 161: 113649.
[9] ZHU Rongchen, HU Xiaofeng, BAI Yiping, et al. Risk analysis of terrorist attacks on LNG storage tanks at ports[J]. Safety science, 2021, 137: 105192.
[10] BIAN Tao, JIANG Zhongping. Reinforcement learning and adaptive optimal control for continuous-time nonlinear systems: a value iteration approach[J]. IEEE transactions on neural networks and learning systems, 2022, 33(7): 2781-2790.
[11] 于泽, 宁念文, 郑燕柳, 等. 深度强化学习驱动的智能交通信号控制策略综述[J]. 计算机科学, 2023, 50(4): 159-171.
YU Ze, NING Nianwen, ZHENG Yanliu, et al. Review of intelligent traffic signal control strategies driven by deep reinforcement learning[J]. Computer science, 2023, 50(4): 159-171.
[12] WU Yan, LUO Shixian, DENG Feiqi. Reinforcement learning for optimal control of linear impulsive systems with periodic impulses[J]. Neurocomputing, 2024, 585: 127569.
[13] 高玉钊, 聂一鸣. 基于值函数分解的多智能体深度强化学习方法研究综述[J]. 计算机科学, 2024, 51(S1): 34-42.
GAO Yuzhao, NIE Yiming. Review of multi-agent deep reinforcement learning method based on value function decomposition[J]. Computer science, 2024, 51(S1): 34-42.
[14] HU Jinming, HU Xiaofeng, KONG Feng, et al. Vulnerability analysis of super high-rise building security system based on Bayesian network and digital twin technology[J]. Process safety and environmental protection, 2024, 187: 1047-1061.
[15] ASGHARNIA A, SCHWARTZ H, ATIA M. Multi-objective fuzzy Q-learning to solve continuous state-action problems[J]. Neurocomputing, 2023, 516: 115-132.
[16] KIUMARSI B, ALQAUDI B, MODARES H, et al. Optimal control using adaptive resonance theory and Q-learning[J]. Neurocomputing, 2019, 361: 119-125.
[17] GARí Y, PACINI E, ROBINO L, et al. Online RL-based cloud autoscaling for scientific workflows: Evaluation of Q-Learning and SARSA[J]. Future generation computer systems, 2024, 157: 573-586.
[18] YANG Xu, LIU Pei, LIU Fang, et al. A DOD-SOH balancing control method for dynamic reconfigurable battery systems based on DQN algorithm[J]. Frontiers in energy research, 2023, 11: 1333147.
[19] WU Peiliang, ZHANG Yan, LI Yao, et al. A robot pick and place skill learning method based on maximum entropy and DDQN algorithm[J]. Journal of physics: conference series, 2022, 2203(1): 012063.
[20] SENTHIL KUMAR S, ALZABEN N, SRIDEVI A, et al. Improving quality of service (QoS) in wireless multimedia sensor networks using epsilon greedy strategy[J]. Measurement science review, 2024, 24(3): 113-117.
[21] MILI K, BENGANA I, OUASSAF S, et al. Testing the co-integration relationship between auto insurance premiums and risk compensation amount[J]. Computers in human behavior reports, 2024, 13: 100377.
[22] HOU Miaomiao, HU Xiaofeng, CAI Jitao, et al. An integrated graph model for spatial-temporal urban crime prediction based on attention mechanism[J]. ISPRS international journal of geo-information, 2022, 11(5): 294.
[23] WANG Lina, XU Mengjie, ZHANG Ying. An intelligent decision algorithm for a greenhouse system based on a rough set and D-S evidence theory[J]. IAENG international journal of applied mathematics, 2024, 54(6): 1240-1250.
[24] 秦荣水, 石晨晨, 陈超, 等. 基于模糊贝叶斯网络的城市商业综合体火灾风险分析[J]. 中国安全科学学报, 2023, 33(12): 176-182.
QIN Rongshui, SHI Chenchen, CHEN Chao, et al. Risk analysis on fire accident of urban commercial complex based on fuzzy Bayesian network[J]. China safety science journal, 2023, 33(12): 176-182.
[25] COPPA E, IZZILLO A. Testing concolic execution through consistency checks[J]. Journal of systems and software, 2024, 211: 112001.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems