[1]PAN Deng,BI Xiaojun.Classification of functional magnetic resonance images for autism based on Transformer model[J].CAAI Transactions on Intelligent Systems,2025,20(2):400-406.[doi:10.11992/tis.202402025]
Copy

Classification of functional magnetic resonance images for autism based on Transformer model

References:
[1] LYALL K, CROEN L, DANIELS J, et al. The changing epidemiology of autism spectrum disorders[J]. Annual review of public health, 2017, 38: 81-102.
[2] NICKEL R E, HUANG-STORMS L. Early identification of young children with autism spectrum disorder[J]. Indian journal of pediatrics, 2017, 84(1): 53-60.
[3] CHUNG T, CORNELIUS J, CLARK D, et al. Greater prevalence of proposed ICD-11 alcohol and cannabis dependence compared to ICD-10, DSM-IV, and DSM-5 in treated adolescents[J]. Alcoholism, clinical and experimental research, 2017, 41(9): 1584-1592.
[4] KHODATARS M, SHOEIBI A, SADEGHI D, et al. Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review[J]. Computers in biology and medicine, 2021, 139: 104949.
[5] CROSSON B, FORD A, MCGREGOR K M, et al. Functional imaging and related techniques: an introduction for rehabilitation researchers[J]. Journal of rehabilitation research and development, 2010, 47(2): vii-xxxiv.
[6] GREICIUS M. Resting-state functional connectivity in neuropsychiatric disorders[J]. Current opinion in neurology, 2008, 21(4): 424-430.
[7] EL-GAZZAR A, QUAAK M, CERLIANI L, et al. A hybrid 3DCNN and 3DC-LSTM based model for 4D spatio-temporal fMRI data: an ABIDE autism classification study[M]//OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging. Cham: Springer International Publishing, 2019: 95-102.
[8] SHERKATGHANAD Z, AKHONDZADEH M, SALARI S, et al. Automated detection of autism spectrum disorder using a convolutional neural network[J]. Frontiers in neuroscience, 2020, 13: 1325.
[9] 郭磊, 王骏, 丁维昌, 等. 4D卷积神经网络的自闭症功能磁共振图像分类[J]. 智能系统学报, 2021, 16(6): 1021-1029.
GUO Lei, WANG Jun, DING Weichang, et al. Classification of the functional magnetic resonance image of autism based on 4D convolutional neural network[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1021-1029.
[10] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000–6010.
[11] DENG Xin, ZHANG Jiahao, LIU Rui, et al. Classifying ASD based on time-series fMRI using spatial–temporal transformer[J]. Computers in biology and medicine, 2022, 151: 106320.
[12] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. (2020-10-22)[2024-02-26]. https://arxiv.org/abs/2010.11929.
[13] ZHENG Sixiao, LU Jiachen, ZHAO Hengshuang, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 6877-6886.
[14] LI Guang, ZHU Linchao, LIU Ping, et al. Entangled transformer for image captioning[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 8928-8937.
[15] PARMAR N, VASWANI A, USZKOREIT J, et al. Image transformer[C]//International conference on machine learning. Stockholm: PMLR, 2018: 4055-4064.
[16] HONG Danfeng, HAN Zhu, YAO Jing, et al. SpectralFormer: rethinking hyperspectral image classification with transformers[J]. IEEE transactions on geoscience and remote sensing, 2021, 60: 5518615.
[17] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Computer Vision–ECCV 2020. Cham: Springer International Publishing, 2020: 213-229.
[18] BEAL J, KIM E, TZENG E, et al. Toward transformer-based object detection[EB/OL]. (2020-12-17) [2024-02-26]. https://arxiv.org/abs/2012.09958.
[19] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992-10002.
[20] FUSHIKI T. Estimation of prediction error by using K-fold cross-validation[J]. Statistics and computing, 2011, 21(2): 137-146.
[21] MAENNER MATTHEW J, MARSHALYN Y A, KIM V N B, et al. Development of a machine learning algorithm for the surveillance of autism spectrum disorder[J]. PLoS One, 2016, 11(12): e0168224.
[22] ABRAHAM A, MILHAM M P, DI MARTINO A, et al. Deriving reproducible biomarkers from multi-site resting-state data: an Autism-based example[J]. NeuroImage, 2017, 147: 736-745.
[23] YAN Chaogan, WANG Xindi, ZUO Xinian, et al. DPABI: data processing & analysis for (resting-state) brain imaging[J]. Neuroinformatics, 2016, 14(3): 339-351.
[24] SCHAEFER A, KONG Ru, GORDON E M, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI[J]. Cerebral cortex, 2018, 28(9): 3095-3114.
Similar References:

Memo

-

Last Update: 2025-03-05

Copyright © CAAI Transactions on Intelligent Systems