[1]GAO Yu,HUO Jing,LI Wenbin,et al.Object goal navigation based on path planning characteristics[J].CAAI Transactions on Intelligent Systems,2024,19(1):217-227.[doi:10.11992/tis.202309001]
Copy

Object goal navigation based on path planning characteristics

References:
[1] ANDERSON P, CHANG A, CHAPLOT D S, et al. On evaluation of embodied navigation agents[EB/OL]. (2018?01?18)[2023?09?01]. https://arxiv.org/abs/1807.06757.pdf.
[2] 王作为, 徐征, 张汝波, 等. 记忆神经网络在机器人导航领域的应用与研究进展[J]. 智能系统学报, 2020, 15(5): 835–846
WANG Zuowei, XU Zheng, ZHANG Rubo, et al. Research progress and application of memory neural network in robot navigation[J]. CAAI transactions on intelligent systems, 2020, 15(5): 835–846
[3] YADAV K, RAMRAKHYA R, RAMAKRISHNAN S K, et al. Habitat-matterport 3D semantics dataset[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 4927?4936.
[4] RAMAKRISHNAN S K, GOKASLAN A, WIJMANS E, et al. Habitat-matterport 3D dataset (HM3D): 1000 large-scale 3D environments for embodied AI[EB/OL]. (2021?09?16)[2023?09?01]. https://arxiv.org/abs/2109.08238.pdf.
[5] ZHANG Ji, SINGH S. LOAM: lidar odometry and mapping in real-time[C]//Robotics: Science and Systems Conference.Calidornia: Science and Systems Foundation, 2014: 1?9.
[6] VIZZO I, GUADAGNINO T, MERSCH B, et al. KISS-ICP: in defense of point-to-point ICP–simple, accurate, and robust registration if done the right way[J]. IEEE robotics and automation letters, 2023, 8(2): 1029–1036.
[7] 沈斯杰, 田昕, 魏国亮, 等. 基于2D激光雷达的SLAM算法研究综述[J]. 计算机技术与发展, 2022, 32(1): 13–18,46
SHEN Sijie, TIAN Xin, WEI Guoliang, et al. Review of SLAM algorithm based on 2D lidar[J]. Computer technology and development, 2022, 32(1): 13–18,46
[8] MUR-ARTAL R, TARDóS J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE transactions on robotics, 2017, 33(5): 1255–1262.
[9] CVI?I? I, ?ESI? J, MARKOVI? I, et al. SOFT-SLAM: Computationally efficient stereo visual simultaneous localization and mapping for autonomous unmanned aerial vehicles[J]. Journal of field robotics, 2018, 35(4): 578–595.
[10] 张毅, 陈起, 罗元. 室内环境下移动机器人三维视觉SLAM[J]. 智能系统学报, 2015, 10(4): 615–619
ZHANG Yi, CHEN Qi, LUO Yuan. Three dimensional visual SLAM for mobile robots in indoor environments[J]. CAAI transactions on intelligent systems, 2015, 10(4): 615–619
[11] 王霞, 左一凡. 视觉slam研究进展[J]. 智能系统学报, 2020, 15(5): 825–834
WANG Xia, ZUO Yifan. Advances in visual SLAM research[J]. CAAI transactions on intelligent systems, 2020, 15(5): 825–834
[12] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE transactions on systems science and cybernetics, 1968, 4(2): 100–107.
[13] KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE transactions on robotics and automation, 1996, 12(4): 566–580.
[14] 李娟, 张韵, 陈涛. 改进RRT算法在未知三维环境下AUV目标搜索中的应用[J]. 智能系统学报, 2022, 17(2): 368–375
LI Juan, ZHANG Yun, CHEN Tao. Application of the improved RRT algorithm to AUV target search in an unknown 3D environment[J]. CAAI transactions on intelligent systems, 2022, 17(2): 368–375
[15] WARREN C W. Global path planning using artificial potential fields[C]//Proceedings, 1989 International Conference on Robotics and Automation. Piscataway: IEEE, 2002: 316?321.
[16] 朱少凯, 孟庆浩, 金晟, 等. 基于深度强化学习的室内视觉局部路径规划[J]. 智能系统学报, 2022, 17(5): 908–918
ZHU Shaokai, MENG Qinghao, JIN Sheng, et al. Indoor visual local path planning based on deep reinforcement learning[J]. CAAI transactions on intelligent systems, 2022, 17(5): 908–918
[17] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[EB/OL]. (2013?12?19)[2023?09?01]. https://arxiv.org/abs/1312.5602.pdf.
[18] MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning[EB/OL]. (2016?01?16)[2023?09?01]. https://arxiv.org/abs/1602.01783.pdf.
[19] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. (2017?07?28)[2023?09?01]. https://arxiv.org/abs/1707.06347.pdf.
[20] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[EB/OL]. (2015?09?09)[2023?09?01]. https://arxiv.org/abs/1509.02971.pdf.
[21] 黄东晋, 蒋晨凤, 韩凯丽. 基于深度强化学习的三维路径规划算法[J]. 计算机工程与应用, 2020, 56(15): 30–36
HUANG Dongjin, JIANG Chenfeng, HAN Kaili. 3D path planning algorithm based on deep reinforcement learning[J]. Computer engineering and applications, 2020, 56(15): 30–36
[22] FAUST A, OSLUND K, RAMIREZ O, et al. PRM-RL: long-range robotic navigation tasks by combining reinforcement learning and sampling-based planning[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2018: 5113?5120.
[23] CHAPLOT D S, GANDHI D P, GUPTA A, et al. Object goal navigation using goal-oriented semantic exploration[J]. Advances in neural information processing systems, 2020, 33: 4247–4258.
[24] YANG Wei, WANG Xiaolong, FARHADI A, et al. Visual semantic navigation using scene priors[EB/OL]. (2018?10?15)[2023?09?01]. https://arxiv.org/abs/1810.06543.pdf.
[25] MAKSYMETS O, CARTILLIER V, GOKASLAN A, et al. THDA: treasure hunt data augmentation for semantic navigation[C]//2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 15354?15363.
[26] MAYO B, HAZAN T, TAL A. Visual navigation with spatial attention[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2021: 16893?16902.
[27] CHAPLOT D S, GANDHI D, GUPTA S, et al. Learning to explore using active neural SLAM[EB/OL]. (2020?04?20)[2023?09?01]. https://arxiv.org/abs/2004.05155.pdf.
[28] HE Kaiming, GKIOXARI G, DOLL?R P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2017: 2980?2988.
[29] SETHIAN J A. A fast marching level set method for monotonically advancing fronts[J]. Proceedings of the national academy of sciences of the United States of America, 1996, 93(4): 1591–1595.
[30] WIJMANS E, KADIAN A, MORCOS A, et al. DD-PPO: learning near-perfect PointGoal navigators from 2.5 billion frames[EB/OL]. (2019?11?01)[2023?09?01]. https://arxiv.org/abs/1911.00357.pdf.
[31] RAMAKRISHNAN S K, JAYARAMAN D, GRAUMAN K. An exploration of embodied visual exploration[J]. International journal of computer vision, 2021, 129(5): 1–34.
[32] GEORGAKIS G, BUCHER B, SCHMECKPEPER K, et al. Learning to map for active semantic goal navigation[EB/OL]. (2021?06?29)[2023?09?01]. https://arxiv.org/abs/2106.15648.pdf.
[33] ZHU Minzhao, ZHAO Binglei, KONG Tao. Navigating to objects in unseen environments by distance prediction[C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2022: 10571?10578.
[34] LIANG Yiqing, CHEN Boyuan, SONG Shuran. SSCNav: confidence-aware semantic scene completion for visual semantic navigation[C]//2021 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2021: 13194?13200.
[35] SAVVA M, KADIAN A, MAKSYMETS O, et al. Habitat: a platform for embodied AI research[C]//2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2020: 9338?9346.
[36] SZOT A, CLEGG A, UNDERSANDER E, et al. Habitat 2.0: training home assistants to rearrange their habitat[EB/OL]. (2021?10?06)[2023?09?01]. https://arxiv.org/abs/2106.14405.pdf.
[37] YAMAUCHI B. A frontier-based approach for autonomous exploration[C]//Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97. ’Towards New Computational Principles for Robotics and Automation’. Piscataway: IEEE, 2002: 146?151.
[38] RAMRAKHYA R, UNDERSANDER E, BATRA D, et al. Habitat-web: learning embodied object-search strategies from human demonstrations at scale[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5163?5173.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems