[1]HAO Jianlong,LIU Zhibin,ZHANG Chen,et al.Stock trend prediction method based on improved Transformer and hypergraph model[J].CAAI Transactions on Intelligent Systems,2024,19(5):1126-1135.[doi:10.11992/tis.202308017]
Copy

Stock trend prediction method based on improved Transformer and hypergraph model

References:
[1] 次必聪, 张品一. 基于ARIMA-LSTM模型的金融时间序列预测[J]. 统计与决策, 2022, 38(11): 145-149.
CI Bicong, ZHANG Pinyi. Prediction of financial time series based on ARIMA-LSTM model[J]. Statistics & decision, 2022, 38(11): 145-149.
[2] 徐浩然, 许波, 徐可文. 机器学习在股票预测中的应用综述[J]. 计算机工程与应用, 2020, 56(12): 19-24.
XU Haoran, XU Bo, XU Kewen. Analysis on application of machine learning in stock forecasting[J]. Computer engineering and applications, 2020, 56(12): 19-24.
[3] 李斌, 龙真. 中国股票市场可预测性研究: 基于机器学习的视角[J]. 管理科学学报, 2023, 26(10): 138-158.
LI Bin, LONG Zhen. Return predictability in the Chinese stock markets: a machine learning perspective[J]. Journal of management sciences in China, 2023, 26(10): 138-158.
[4] HOSEINZADE E, HARATIZADEH S. CNNpred: CNN-based stock market prediction using a diverse set of variables[J]. Expert systems with applications, 2019, 129: 273-285.
[5] ZHANG Liheng, AGGARWAL C, QI Guojun. Stock price prediction via discovering multi-frequency trading patterns[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax: ACM, 2017: 2141-2149.
[6] DING Qianggang, WU Sifan, SUN Hao, et al. Hierarchical multi-scale Gaussian transformer for stock movement prediction[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. Yokohama: IJCAI, 2020: 4640-4646.
[7] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30: 5998-6008.
[8] FENG Shibo, XU Chen, ZUO Yu, et al. Relation-aware dynamic attributed graph attention network for stocks recommendation[J]. Pattern recognition, 2022, 121: 108119.
[9] 吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45(1): 35-68.
WU Bo, LIANG Xun, ZHANG Shusen, et al. Advances and applications in graph neural network[J]. Chinese journal of computers, 2022, 45(1): 35-68.
[10] 吴国栋, 查志康, 涂立静, 等. 图神经网络推荐研究进展[J]. 智能系统学报, 2020, 15(1): 14-24.
WU Guodong, ZHA Zhikang, TU Lijing, et al. Research advances in graph neural network recommendation[J]. CAAI transactions on intelligent systems, 2020, 15(1): 14-24.
[11] CHEN Yingmei, WEI Zhongyu, HUANG Xuanjing. Incorporating corporation relationship via graph convolutional neural networks for stock price prediction[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino: ACM, 2018: 1655-1658.
[12] FENG Fuli, HE Xiangnan, WANG Xiang, et al. Temporal relational ranking for stock prediction[J]. ACM transactions on information systems, 2019, 37(2): 1-30.
[13] HE Pinglin, SUN Yulong, ZHANG Ying, et al. COVID–19’s impact on stock prices across different sectors—an event study based on the Chinese stock market[J]. Emerging markets finance and trade, 2020, 56(10): 2198-2212.
[14] FENG Yifan, YOU Haoxuan, ZHANG Zizhao, et al. Hypergraph neural networks[C]//Proceedings of the AAAI conference on artificial intelligence. Honolulu: AAAI, 2019: 3558-3565.
[15] WEI Jinfeng, WANG Yunxin, GUO Mengli, et al. Dynamic hypergraph convolutional networks for skeleton-based action recognition[EB/OL]. (2021-12-20)[2023-08-16]. https://doi.org/10.48550/arXiv.2112.10570.
[16] WANG Jingcheng, ZHANG Yong, WEI Yun, et al. Metro passenger flow prediction via dynamic hypergraph convolution networks[J]. IEEE transactions on intelligent transportation systems, 2021, 22(12): 7891-7903.
[17] XIA Lianghao, HUANG Chao, XU Yong, et al. Hypergraph contrastive collaborative filtering[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid: SIGIR, 2022: 70-79.
[18] SAWHNEY R, AGARWAL S, WADHWA A, et al. Spatiotemporal hypergraph convolution network for stock movement forecasting[C]//2020 IEEE International Conference on Data Mining. Sorrento: IEEE, 2020: 482-491.
[19] CUI Chaoran, LI Xiaojie, ZHANG Chunyun, et al. Temporal-relational hypergraph tri-attention networks for stock trend prediction[J]. Pattern recognition, 2023, 143: 109759.
[20] LI Xiaojie, CUI Chaoran, CAO Donglin, et al. Hypergraph-based reinforcement learning for stock portfolio selection[C]//2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Singapore: IEEE, 2022: 4028-4032.
[21] GAO Yue, FENG Yifan, JI Shuyi, et al. HGNN+: general hypergraph neural networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(3): 3181-3199.
[22] JEANBLANC M, YOR M, CHESNEY M. Mathematical methods for financial markets[M]. London: Springer Science & Business Media, 2009.
[23] BAI Song, ZHANG Feihu, TORR P H S. Hypergraph convolution and hypergraph attention[J]. Pattern recognition, 2021, 110: 107637.
[24] QIN Yao, SONG Dongjin, CHEN Haifeng, et al. A dual-stage attention-based recurrent neural network for time series prediction[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne: IJCAI, 2017: 2627-2633.
[25] KIM R, SO C H, JEONG M, et al. Hats: a hierarchical graph attention network for stock movement prediction[EB/OL]. (2019-08-07)[2023-08-16]. https://doi.org/10.48550/arXiv.1908.07999.
Similar References:

Memo

-

Last Update: 2024-09-05

Copyright © CAAI Transactions on Intelligent Systems