[1]ZHAO Wenqing,LIU Liang,HU Jiawei,et al.Detection of transformer oil leakage based on deep separable atrous convolution pyramid[J].CAAI Transactions on Intelligent Systems,2023,18(5):966-974.[doi:10.11992/tis.202212016]
Copy

Detection of transformer oil leakage based on deep separable atrous convolution pyramid

References:
[1] RAJOTTE C. Guide for transformer maintenance[R]. Paris: Cigre Working Group A2.34, 2011.
[2] Power transformers - Part 7: Loading guide for oil-immersed power transformers: IEC 60076-7 Ed. 1.0 b: 2005[S]. International Electrotechnical Commission [iec], 2005.
[3] 翟永杰, 杨旭, 赵振兵, 等. 融合共现推理的Faster R-CNN输电线路金具检测[J]. 智能系统学报, 2021, 16(2): 237-246
ZHAI Yongjie, YANG Xu, ZHAO Zhenbing, et al. Integrating co-occurrence reasoning for Faster R-CNN transmission line fitting detection[J]. CAAI transactions on intelligent systems, 2021, 16(2): 237-246
[4] 苏丽, 孙雨鑫, 苑守正. 基于深度学习的实例分割研究综述[J]. 智能系统学报, 2022, 17(1): 16-31
SU Li, SUN Yuxin, YUAN Shouzheng. A survey of instance segmentation research based on deep learning[J]. CAAI transactions on intelligent systems, 2022, 17(1): 16-31
[5] 马岽奡, 唐娉, 赵理君, 等. 深度学习图像数据增广方法研究综述[J]. 中国图象图形学报, 2021, 26(3): 487-502
MA Dongao, TANG Ping, ZHAO Lijun, et al. Review of data augmentation for image in deep learning[J]. Journal of image and graphics, 2021, 26(3): 487-502
[6] 赵振兵, 张薇, 翟永杰, 等. 电力视觉技术的概念、研究现状与展望[J]. 电力科学与工程, 2020, 36(1): 1-8
ZHAO Zhenbing, ZHANG Wei, ZHAI Yongjie, et al. Concept, research status and prospect of electric power vision technology[J]. Electric power science and engineering, 2020, 36(1): 1-8
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779?788.
[8] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517?6525.
[9] FARHADI A, REDMON J. YOLOv3: an incremental improvement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1804?2767.
[10] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020?04?23)[2023?03?29]. https://arxiv.org/abs/2004.10934.
[11] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. (2022?07?06)[2023?03?29]. https://arxiv.org/abs/2207.02696.
[12] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21?37.
[13] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580?587.
[14] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[15] LI Lu, ICHIMURA S, MORIYAMA T, et al. A system to detect small amounts of oil leakage with oil visualization for transformers using fluorescence recognition[J]. IEEE transactions on dielectrics and electrical insulation, 2017, 24(2): 1249-1255.
[16] LI Anqi, YE Dongxu, LYU Erli, et al. RGB-thermal fusion network for leakage detection of crude oil transmission pipes[C]//2019 IEEE International Conference on Robotics and Biomimetics. Dali: IEEE, 2020: 883?888.
[17] LI Lu, ICHIMURA S, YAMAGISHI A, et al. Oil film detection under solar irradiation and image processing[J]. IEEE sensors journal, 2020, 20(6): 3070-3077.
[18] 鲍伟超, 顾理, 何劲松, 等. 基于循环训练法的变压器漏油检测[J]. 计算机辅助设计与图形学学报, 2021, 33(3): 431-438
BAO Weichao, GU Li, HE Jinsong, et al. Transformer oil leakage detection based on loop training method[J]. Journal of computer-aided design & computer graphics, 2021, 33(3): 431-438
[19] GHORBANI Z, BEHZADAN A H. Monitoring offshore oil pollution using multi-class convolutional neural networks[J]. Environmental pollution, 2021, 289: 117884.
[20] WANG Feng, ZHONG Zhen, WANG Guang, et al. A penalized convolution model for oil leakage detection in electrohydraulic railway point systems[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 1-9.
[21] CHEN Xu, LIU Lei, HUANG Wei. The detection and prediction for oil spill on the sea based on the infrared images[J]. Infrared physics & technology, 2016, 77: 391-404.
[22] LI Bing, WANG Tian, HU Zhedong, et al. Two-level model for detecting substation defects from infrared images[J]. Sensors, 2022, 22(18): 6861.
[23] CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//European Conference on Computer Vision. Cham: Springer, 2018: 833?851.
[24] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1800?1807.
[25] CHEN L C, GEORGE P, FLORIAN S, etal. Rethinking atrous convolution for semantic image segmentation[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1601?1614.
[26] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//European Conference on Computer Vision. Cham: Springer, 2018: 3?19.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems