[1]WANG Jun,ZHANG Zhen,LI Fuqiang,et al.A review of the research on bionic flapping-wing unmanned systems[J].CAAI Transactions on Intelligent Systems,2023,18(3):410-439.[doi:10.11992/tis.202212007]
Copy

A review of the research on bionic flapping-wing unmanned systems

References:
[1] 张元开. 当前小型仿生扑翼飞行机器人研究综述[J]. 北方工业大学学报, 2018, 30(2): 57–66
ZHANG Yuankai. Review of current research results of miniature bionic flapping wing robots[J]. Journal of North China University of Technology, 2018, 30(2): 57–66
[2] ELLINGTON C P, VAN DEN BERG C, WILLMOTT A P, et al. Leading-edge vortices in insect flight[J]. Nature, 1996, 384(6610): 626–630.
[3] 向锦武, 孙毅, 申童, 等. 扑翼空气动力学研究进展与应用[J]. 工程力学, 2019, 36(4): 8–23
XIANG Jinwu, SUN Yi, SHEN Tong, et al. Research progress and application of flapping wing aerodynamics[J]. Engineering mechanics, 2019, 36(4): 8–23
[4] 宋笔锋, 稂鑫雨, 薛栋, 等. 鸟翼空气动力学机理的研究现状和进展综述[J]. 中国科学:技术科学, 2022, 52(6): 893–910
SONG Bifeng, LANG Xinyu, XUE Dong, et al. A review of the research status and progress on the aerodynamic mechanism of bird wings[J]. Scientia sinica (technologica), 2022, 52(6): 893–910
[5] TEOH Z E, WOOD R J. A bioinspired approach to torque control in an insect-sized flapping-wing robot[C]//5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. Sao Paulo: IEEE, 2014: 911?917.
[6] 孙茂. 昆虫飞行的空气动力学[J]. 力学进展, 2015, 45(1): 1–28
SUN Mao. Aerodynamics of insect flight[J]. Advances in Mechanics, 2015, 45(1): 1–28
[7] DILEO C, DENG Xinyan. Design of and experiments on a dragonfly-inspired robot[J]. Advanced robotics, 2009, 23(7/8): 1003–1021.
[8] 沈海军, 余翼. 形态仿生飞行器研制进展及关键技术[J]. 航空工程进展, 2021, 12(3): 9–19
SHEN Haijun, YU Yi. Development and key technologies of morphological bionic aircraft[J]. Advances in aeronautical science and engineering, 2021, 12(3): 9–19
[9] 徐韦佳, 姚奎, 宋阿羚, 等. 微型仿生扑翼飞行器研究综述[J]. 信息技术与网络安全, 2020, 39(10): 7–10,17
XU Weijia, YAO Kui, SONG Aling, et al. Survey of research on small and micro bionic flapping wing aircraft[J]. Information technology and network security, 2020, 39(10): 7–10,17
[10] 马东福, 宋笔锋, 宣建林, 等. 仿鸟扑翼飞行器自主起降技术研究进展[J]. 宇航学报, 2021, 42(3): 265–273
MA Dongfu, SONG Bifeng, XUAN Jianlin, et al. Recent progress in autonomous take-off and landing technology of bird-like flapping-wing aerial vehicle[J]. Journal of astronautics, 2021, 42(3): 265–273
[11] DE CLERCQ K, DE KAT R, REMES B, et al. Flow visualization and force measurements on a hovering flapping-wing MAV ‘DelFly II’[C]//39th AIAA Fluid Dynamics Conference. San Antonio: AIAA, 2009: 4035.
[12] PHAN H V, PARK H C. Mimicking nature’s flyers: a review of insect-inspired flying robots[J]. Current opinion in insect science, 2020, 42: 70–75.
[13] MUELLER D, GERDES J W, GUPTA S K. Incorporation of passive wing folding in flapping wing miniature air vehicles[C]//Proceedings of ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. San Diego: 2010: 797-805.
[14] WEIS-FOGH T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production[J]. Journal of experimental biology, 1973, 59(1): 169–230.
[15] DICKINSON M H, LEHMANN F O, SANE S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422): 1954–1960.
[16] DICKINSON M H, G?TZ K G. Unsteady aerodynamic performance of model wings at low Reynolds numbers[J]. Journal of experimental biology, 1993, 174(1): 45–64.
[17] SANE S P. The aerodynamics of insect flight[J]. The Journal of experimental biology, 2003, 206(23): 4191–4208.
[18] MUIJRES F T, SPEDDING G R, WINTER Y, et al. Actuator disk model and span efficiency of flapping flight in bats based on time-resolved PIV measurements[J]. Experiments in fluids, 2011, 51(2): 511–525.
[19] BIRCH J M, DICKINSON M H. The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight[J]. Journal of experimental biology, 2003, 206(13): 2257–2272.
[20] CLAWSON T S, FERRARI S, FARRELL HELBLING E, et al. Full flight envelope and trim map of flapping-wing micro aerial vehicles[J]. Journal of guidance, control, and dynamics, 2020, 43(12): 2218–2236.
[21] PHAN H V, PARK H C. Insect-inspired, tailless, hover-capable flapping-wing robots: recent progress, challenges, and future directions[J]. Progress in aerospace sciences, 2019, 111: 100573.
[22] PHAN H V, AURECIANUS S, AU T K L, et al. Towards the long-endurance flight of an insect-inspired, tailless, two-winged, flapping-wing flying robot[J]. IEEE robotics and automation letters, 2020, 5(4): 5059–5066.
[23] FARRELL HELBLING E, WOOD R J. Closure to “discussion of ‘a review of propulsion, power, and control architectures for insect-scale flapping wing vehicles’”[J]. Applied mechanics reviews, 2018, 70(1): 016001.
[24] KARPELSON M, WATERS B H, GOLDBERG B, et al. A wirelessly powered, biologically inspired ambulatory microrobot[C]//2014 IEEE International Conference on Robotics and Automation. Hong Kong: IEEE, 2014: 2384?2391.
[25] 孔令沛, 龚鹏, 王璐. 微型无人机发展现状研究综述[C]//2019世界交通运输大会论文集(下). 北京: 出版者不详, 2019: 435?444.
KONG Lingpei, GONG Peng, WANG Lu. Review on the development status of micro-UAV[C]//Proceedings of World Transport Convention 2019. Beijing: [s. n. ], 2019: 435?444.
[26] 贺威, 丁施强, 孙长银. 扑翼飞行器的建模与控制研究进展[J]. 自动化学报, 2017, 43(5): 685–696
HE Wei, DING Shiqiang, SUN Changyin. Research progress on modeling and control of flapping-wing air vehicles[J]. Acta automatica sinica, 2017, 43(5): 685–696
[27] PORNSIN-SIRIRAK T N, LEE S W, NASSEF H, et al. MEMS wing technology for a battery-powered ornithopter[C]//Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No. 00CH36308). Miyazaki: IEEE, 2002: 799?804.
[28] PORNSIN-SIRIRAK T N, TAI Yuchong, HO C M, et al. Microbat: A palm-sized electrically powered ornithopter[C] //Proceedings of NASA/JPL Workshop on Biomorphic Robotics. Saint Paul: Citeseer, 2001, 14(17).
[29] KEENNON M, GRASMEYER J. Development of two MAVs and vision of the future of MAV design[C]//AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Dayton: AIAA, 2003: 2901.
[30] RAMEZANI A, SHI Xichen, CHUNG S J, et al. Lagrangian modeling and flight control of articulated-winged bat robot[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg: IEEE, 2015: 2867?2874.
[31] RAMEZANI A, CHUNG S J, HUTCHINSON S. A biomimetic robotic platform to study flight specializations of bats[J]. Science robotics, 2017, 2(3): eaal2505.
[32] RAMEZANI A, SHI Xichen, CHUNG S J, et al. Bat Bot (B2), a biologically inspired flying machine[C]//2016 IEEE International Conference on Robotics and Automation. Stockholm: IEEE, 2016: 3219?3226.
[33] HOFF J, JEON N, LI P, et al. Bat Bot 2.0: bio-inspired anisotropic skin, passive wrist joints, and redesigned flapping mechanism[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague: IEEE, 2021: 8424?8430.
[34] SYED U A, RAMEZANI A, CHUNG S J, et al. From Rousettus aegyptiacus (bat) landing to robotic landing: regulation of CG-CP distance using a nonlinear closed-loop feedback[C]//2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 3560?3567.
[35] KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird: a tailless flapping wing micro air vehicle[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville: AIAA, 2012: 588.
[36] BAEK S S, FEARING R S. Flight forces and altitude regulation of 12 gram I-Bird[C]//2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Tokyo: IEEE, 2010: 454?460.
[37] BAEK S S, GARCIA BERMUDEZ F L, FEARING R S. Flight control for target seeking by 13 gram ornithopter[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco: IEEE, 2011: 2674?2681.
[38] JULIAN R C, ROSE C J, HU H, et al. Cooperative control and modeling for narrow passage traversal with an ornithopter MAV and lightweight ground station[C]// Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems. Saint Paul: Citeseer, 2013: 103?110.
[39] ROSE C, FEARING R S. Comparison of ornithopter wind tunnel force measurements with free flight[C]//2014 IEEE International Conference on Robotics and Automation. Hong Kong: IEEE, 2014: 1816?1821.
[40] ROSE C J, MAHMOUDIEH P, FEARING R S. Coordinated launching of an ornithopter with a hexapedal robot[C]//2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 4029?4035.
[41] GERDES J W, GUPTA S K, WILKERSON S A. A review of bird-inspired flapping wing miniature air vehicle designs[J]. Journal of mechanisms and robotics, 2012, 4(2): 021003–021013.
[42] KHAN Z A, AGRAWAL S K. Design of flapping mechanisms based on transverse bending phenomena in insects[C]//Proceedings 2006 IEEE International Conference on Robotics and Automation. Orlando: IEEE, 2006: 2323?2328.
[43] GERDES J, HOLNESS A, PEREZ-ROSADO A, et al. Robo raven: a flapping-wing air vehicle with highly compliant and independently controlled wings[J]. Soft robotics, 2014, 1(4): 275–288.
[44] MCINTOSH S H, AGRAWAL S K, KHAN Z. Design of a mechanism for biaxial rotation of a wing for a hovering vehicle[J]. IEEE/ASME transactions on mechatronics, 2006, 11(2): 145–153.
[45] DILEO C, DENG Xinyan. Experimental testbed and prototype development for a dragonfly-inspired robot[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego: IEEE, 2007: 1594?1599.
[46] ZHANG Jian, DENG Xinyan. Resonance principle for the design of flapping wing micro air vehicles[J]. IEEE transactions on robotics, 2017, 33(1): 183–197.
[47] NABAWY M R A, MARCINKEVICIUTE R. Scalability of resonant motor-driven flapping wing propulsion systems[J]. Royal society open science, 2021, 8(9): 210452.
[48] ZHANG Jian, FEI Fan, TU Zhan, et al. Design optimization and system integration of robotic hummingbird[C]//2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 5422?5428.
[49] ZHANG Jian, CHENG Bo, YAO Bin, et al. Adaptive robust wing trajectory control and force generation of flapping wing MAV[C]//2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 5852?5857.
[50] TU Zhan, FEI Fan, ZHANG Jian, et al. An At-scale tailless flapping-wing hummingbird robot. I. design, optimization, and experimental validation[J]. IEEE transactions on robotics, 2020, 36(5): 1511–1525.
[51] JIAN Zhang, CHENG Bo, ROLL J A, et al. Direct drive of flapping wings under resonance with instantaneous wing trajectory control[C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013: 4029?4034.
[52] ZHANG Jian, TU Zhan, FEI Fan, et al. Geometric flight control of a hovering robotic hummingbird[C]//2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 5415?5421.
[53] TU Zhan, FEI Fan, YANG Yilun, et al. Realtime on-board attitude estimation of high-frequency flapping wing MAVs under large instantaneous oscillation[C]//2018 IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018: 6806?6811.
[54] TU Zhan, FEI Fan, ZHANG Jian, et al. Acting is seeing: navigating tight space using flapping wings[C]//2019 International Conference on Robotics and Automation. Montreal: IEEE, 2019: 95?101.
[55] FEI Fan, TU Zhan, YANG Yilun, et al. Flappy hummingbird: an open source dynamic simulation of flapping wing robots and animals[C]//2019 International Conference on Robotics and Automation. Montreal: IEEE, 2019: 9223?9229.
[56] TU Zhan, FEI Fan, DENG Xinyan. Untethered flight of an At-scale dual-motor hummingbird robot with bio-inspired decoupled wings[J]. IEEE robotics and automation letters, 2020, 5(3): 4194–4201.
[57] FEI Fan, TU Zhan, ZHANG Jian, et al. Learning extreme hummingbird maneuvers on flapping wing robots[C]//2019 International Conference on Robotics and Automation. Montreal: IEEE, 2019: 109?115.
[58] TU Zhan, FEI Fan, DENG Xinyan. Bio-inspired rapid escape and tight body flip on an At-scale flapping wing hummingbird robot via reinforcement learning[J]. IEEE transactions on robotics, 2021, 37(5): 1742–1751.
[59] CHEN Yufeng, XU Siyi, REN Zhijian, et al. Collision resilient insect-scale soft-actuated aerial robots with high agility[J]. IEEE transactions on robotics, 2021, 37(5): 1752–1764.
[60] MOUNTCASTLE A M, HELBLING E F, WOOD R J. An insect-inspired collapsible wing hinge dampens collision-induced body rotation rates in a microrobot[J]. Journal of the royal society, interface, 2019, 16(150): 20180618.
[61] TU Zhan, FEI Fan, LIU Limeng, et al. Flying with damaged wings: the effect on flight capacity and bio-inspired coping strategies of a flapping wing robot[J]. IEEE robotics and automation letters, 2021, 6(2): 2114–2121.
[62] SEND W, FISCHER M, JEBENS K, et al. Artificial hinged-wing bird with active torsion and partially linear kinematics[C]// Proceeding of 28th Congress of the International Council of the Aeronautical Sciences. Brisbane: [s. n. ], 2012.
[63] Festo. eMotionButterflies ultralight flying objects with collective behaviour[EB/OL]. (2015?04?30)[2022?12?06].https://www.festo.com/net/ SupportPortal/Files/367913/Festo_eMotionButterflies_ en.pdf.
[64] ROSHANBIN A, ALTARTOURI H, KARáSEK M, et al. COLIBRI: a hovering flapping twin-wing robot[J]. International journal of micro air vehicles, 2017, 9(4): 270–282.
[65] ROSHANBIN A, PREUMONT A. Yaw control torque generation for a hovering robotic hummingbird[J]. International journal of advanced robotic systems, 2019, 16(1): 172988141882396.
[66] GAISSERT N, MUGRAUER R, MUGRAUER G, et al. Inventing a micro aerial vehicle inspired by the mechanics of dragonfly flight[C]//Conference Towards Autonomous Robotic Systems. Berlin: Springer, 2014: 90?100.
[67] Festo. BionicSwift safe aerial acrobatics as a swarm[EB/OL]. (2021?02?20)[2022?12?06].https://www.festo.com/net/ SupportPortal/Files/367913/Festo_eMotionButterflies_ en.pdf.
[68] YAN J, WOOD R J, AVADHANULA S, et al. Towards flapping wing control for a micromechanical flying insect[C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164). Seoul: IEEE, 2003: 3901?3908.
[69] SITTI M. Piezoelectrically actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax[J]. IEEE/ASME transactions on mechatronics, 2003, 8(1): 26–36.
[70] 张弘志, 宋笔锋, 孙中超, 等. 扑翼飞行器驱动机构回顾与展望[J]. 航空学报, 2021, 42(2): 024024
ZHANG Hongzhi, SONG Bifeng, SUN Zhongchao, et al. Driving mechanism of flapping wing aircraft: review and prospect[J]. Acta aeronautica et astronautica sinica, 2021, 42(2): 024024
[71] NGUYEN Q, PARK H, BYUN D, et al. Recent progress in developing a beetle-mimicking flapping-wing system[C]//2010 World Automation Congress. Kobe: IEEE, 2010: 1?6.
[72] PHAN H V, TRUONG Q T, PARK H C. Implementation of initial passive stability in insect-mimicking flapping-wing micro air vehicle[J]. International journal of intelligent unmanned systems, 2015, 3(1): 18–38.
[73] PHAN H V, PARK H C. Remotely controlled flight of an insect-like tailless Flapping-wing Micro Air Vehicle[C]//2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence. Goyangi: IEEE, 2015: 315?317.
[74] PHAN H V, KANG T, PARK H C. Controlled hovering flight of an insect-like tailless flapping-wing micro air vehicle[C]//2017 IEEE International Conference on Mechatronics. Churchill: IEEE, 2017: 74-78.
[75] PHAN H V, AURECIANUS S, KANG T, et al. KUBeetle-S: an insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism[J]. International journal of micro air vehicles, 2019, 11: 175682931986137.
[76] PHAN H V, PARK H C. Mechanisms of collision recovery in flying beetles and flapping-wing robots[J]. Science, 2020, 370(6521): 1214–1219.
[77] AU L T K, PHAN H V, PARK S H, et al. Effect of corrugation on the aerodynamic performance of three-dimensional flapping wings[J]. Aerospace science and technology, 2020, 105: 106041.
[78] CHIN Y W, LAU G K. “Clicking” compliant mechanism for flapping-wing micro aerial vehicle[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve: IEEE, 2012: 126?131.
[79] CHIN Y W, GOH J T W, LAU G K. Insect-inspired thoracic mechanism with non-linear stiffness for flapping-wing micro air vehicles[C]//2014 IEEE International Conference on Robotics and Automation. Hong Kong: IEEE, 2014: 3544?3549.
[80] AZHAR M, CAMPOLO D, LAU G K, et al. Flapping wings via direct-driving by DC motors[C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013: 1397?1402.
[81] CAMPOLO D, AZHAR M, LAU G K, et al. Can DC motors directly drive flapping wings at high frequency and large wing strokes?[J]. IEEE/ASME transactions on mechatronics, 2014, 19(1): 109–120.
[82] HINES L, CAMPOLO D, SITTI M. Liftoff of a motor-driven, flapping-wing microaerial vehicle capable of resonance[J]. IEEE transactions on robotics, 2014, 30(1): 220–232.
[83] HINES L, COLMENARES D, SITTI M. Platform design and tethered flight of a motor-driven flapping-wing system[C]//2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 5838?5845.
[84] DE CROON G C H E, DE CLERCQ K M E, RUIJSINK R, et al. Design, aerodynamics, and vision-based control of the DelFly[J]. International journal of micro air vehicles, 2009, 1(2): 71–97.
[85] DE CROON G C H E, GROEN M A, DE WAGTER C, et al. Design, aerodynamics and autonomy of the DelFly[J]. Bioinspiration & biomimetics, 2012, 7(2): 025003.
[86] DENG Shuanghou, PERCIN M, VAN OUDHEUSDEN B, et al. Force and flowfield measurements of a bio-inspired flapping MAV ‘Delfly Micro’[C]//32nd AIAA Applied Aerodynamics Conference. Atlanta: AIAA, 2014: 16?20.
[87] DE WAGTER C, TIJMONS S, REMES B D W, et al. Autonomous flight of a 20-gram Flapping Wing MAV with a 4-gram onboard stereo vision system[C]//2014 IEEE International Conference on Robotics and Automation. Hong Kong: IEEE, 2014: 4982?4987.
[88] KARáSEK M, MUIJRES F T, DE WAGTER C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407): 1089–1094.
[89] WOOD R J, AVADHANULA S, SAHAI R, et al. Microrobot design using fiber reinforced composites[J]. Journal of mechanical design, 2008, 130(5): 1.
[90] WOOD R J. The first takeoff of a biologically inspired at-scale robotic insect[J]. IEEE transactions on robotics, 2008, 24(2): 341–347.
[91] MA K Y, CHIRARATTANANON P, FULLER S B, et al. Controlled flight of a biologically inspired, insect-scale robot[J]. Science, 2013, 340(6132): 603–607.
[92] CHIRARATTANANON P, MA K Y, WOOD R J. Fly on the wall[C]//5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. Sao Paulo: IEEE, 2014: 1001?1008.
[93] CHEN Yufeng, HELBLING E F, GRAVISH N, et al. Hybrid aerial and aquatic locomotion in an at-scale robotic insect[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg: IEEE, 2015: 331?338.
[94] JAFFERIS N T, HELBLING E F, KARPELSON M, et al. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle[J]. Nature, 2019, 570(7762): 491–495.
[95] HELBLING E F, FULLER S B, WOOD R J. Altitude estimation and control of an insect-scale robot with an onboard proximity sensor[M]//Bicchi A, Burgard W. Robotics Research. Cham: Springer, 2018: 57?69.
[96] STEINMEYER R, HYUN N S P, HELBLING E F, et al. Yaw torque authority for a flapping-wing micro-aerial vehicle[C]//2019 International Conference on Robotics and Automation. Montreal: IEEE, 2019: 2481?2487.
[97] CHEN Yufeng, ZHAO Huichan, MAO Jie, et al. Controlled flight of a microrobot powered by soft artificial muscles[J]. Nature, 2019, 575(7782): 324–329.
[98] ZHANG Jun, SHENG Jun, O’NEILL C T, et al. Robotic artificial muscles: current progress and future perspectives[J]. IEEE transactions on robotics, 2019, 35(3): 761–781.
[99] BAI Songnan, DING Runze, CHIRARATTANANON P. A micro aircraft with passive variable-sweep wings[J]. IEEE robotics and automation letters, 2022, 7(2): 4016–4023.
[100] 王鹏程. 仿鸟扑翼飞行器系统设计与样机研制[D]. 南京: 南京航空航天大学, 2019.
WANG Pengcheng. System design and prototype fabrication of simulating bird flapping robot[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
[101] 程宏宝. 仿蝴蝶飞行器总体设计与控制仿真[D]. 京: 南京航空航天大学, 2020.
CHENG Hongbao. Overall design and control simulation of a butterfly-shaped aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
[102] 朱梓轩. 扑翼/固定翼复合飞行器飞行控制技术究[D]. 南京: 南京航空航天大学, 2020.
ZHU Zixuan. Research on flight control technology of flapping-wing/fixed-wing composite aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
[103] 顾光健. 仿生扑翼飞行器的设计制作与力学测[D]. 南京: 南京航空航天大学, 2020
GU Guangjian. Design and mechanical test of biomimeticflapping-wing micro air vehicle[D]. Nanjing: NanjingUniversity of Aeronautics and Astronautics, 2020.
[104] YANG Wenqing, WANG Liguang, SONG Bifeng. Dove: a biomimetic flapping-wing micro air vehicle[J]. International journal of micro air vehicles, 2018, 10(1): 70–84.
[105] XUAN Jianlin, SONG Bifeng, SONG Wenping, et al. Progress of Chinese “Dove” and future studies on flight mechanism of birds and application system[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2020, 37(5): 663–675.
[106] LIANG Shaoran, SONG Bifeng, XUAN Jianlin. Active disturbance rejection attitude control for a bird-like flapping wing micro air vehicle during automatic landing[J]. IEEE access, 2020, 8: 171359–171372.
[107] WANG Siqi, SONG Bifeng, CHEN Ang, et al. Modeling and flapping vibration suppression of a novel tailless flapping wing micro air vehicle[J]. Chinese journal of aeronautics, 2022, 35(3): 309–328.
[108] HUANG Haifeng, HE Wei, WANG Jiubin, et al. An all servo-driven bird-like flapping-wing aerial robot capable of autonomous flight[J]. IEEE/ASME transactions on mechatronics, 2022, 27(6): 5484–5494.
[109] JIAO Zongxia, WANG Liang, ZHAO Longfei, et al. Hover flight control of X-shaped flapping wing aircraft considering wing–tail interactions[J]. Aerospace science and technology, 2021, 116: 106870.
[110] ZHAO Longfei, WANG Wenshou, CHEN Yuxin, et al. Analytical modeling of a hoverable X-shape flapping wing aircraft considering wing-tail interaction[C]// 32nd Congress of the International Council of the Aeronautical Sciences. Shanghai: ICAS, 2021: 1?11.
[111] BIE Dawei, LI Daochun, XIANG Jinwu, et al. Design, aerodynamic analysis and test flight of a bat-inspired tailless flapping wing unmanned aerial vehicle[J]. Aerospace science and technology, 2021, 112: 106557.
[112] GONG Chunlin, HAN Jiakun, YUAN Zongjing, et al. Numerical investigation of the effects of different parameters on the thrust performance of three dimensional flapping wings[J]. Aerospace science and technology, 2019, 84: 431–445.
[113] CHEN Yufeng, GRAVISH N, DESBIENS A L, et al. Experimental and computational studies of the aerodynamic performance of a flapping and passively rotating insect wing[J]. Journal of fluid mechanics, 2016, 791: 1–33.
[114] FRY S N, SAYAMAN R, DICKINSON M H. The aerodynamics of free-flight maneuvers in drosophila[J]. Science, 2003, 300(5618): 495–498.
[115] WU Xia, ZHANG Xiantao, TIAN Xinliang, et al. A review on fluid dynamics of flapping foils[J]. Ocean engineering, 2020, 195: 106712.
[116] WANG Z J, BIRCH J M, DICKINSON M H. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments[J]. The Journal of experimental biology, 2004, 207(3): 449–460.
[117] ELLINGTON C P. The aerodynamics of hovering insect flight. III. Kinematics[J]. Philosophical transactions of the royal society of London B, biological sciences, 1984, 305(1122): 41–78.
[118] WANG Z J. Two dimensional mechanism for insect hovering[J]. Physical review letters, 2000, 85(10): 2216–2219.
[119] WANG Z J. Dissecting insect flight[J]. Annual review of fluid mechanics, 2005, 37: 183–210.
[120] LENTINK D, DICKINSON M H. Rotational accelerations stabilize leading edge vortices on revolving fly wings[J]. The journal of experimental biology, 2009, 212(Pt 16): 2705-2719.
[121] BOS F M, LENTINK D, VAN OUDHEUSDEN B W, et al. Influence of wing kinematics on performance in hovering insect flight[J]. Journal of biomechanics, 2006, 39: S358.
[122] GEHRKE A, MULLENERS K. Phenomenology and scaling of optimal flapping wing kinematics[J]. Bioinspiration & biomimetics, 2021, 16(2): 026016.
[123] VAN DEN BERG C, ELLINGTON C P. The three–dimensional leading–edge vortex of a ‘hovering’ model hawkmoth[J]. Philosophical transactions of the royal society of London series B:biological sciences, 1997, 352(1351): 329–340.
[124] WILLMOTT A P, ELLINGTON C P, THOMAS A L R. Flow visualization and unsteady aerodynamics in the flight of the hawkmoth, Manduca sexta[J]. Philosophical transactions of the royal society of London series B:biological sciences, 1997, 352(1351): 303–316.
[125] POELMA C, DICKSON W B, DICKINSON M H. Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing[J]. Experiments in fluids, 2006, 41(2): 213–225.
[126] GROEN M, BRUGGEMAN B, REMES B, et al. Improving flight performance of the flapping wing MAV DelFly II [C]//International Micro Air Vehicle conference and Competitions. Braunschweig: IMAV, 2010: 189?265.
[127] ELDREDGE J D, JONES A R. Leading-edge vortices: mechanics and modeling[J]. Annual review of fluid mechanics, 2019, 51: 75–104.
[128] SIALA F F, LIBURDY J A. Leading-edge vortex dynamics and impulse-based lift force analysis of oscillating airfoils[J]. Experiments in fluids, 2019, 60(10): 1–18.
[129] LEHMANN F O. The mechanisms of lift enhancement in insect flight[J]. Naturwissenschaften, 2004, 91(3): 101–122.
[130] CHENG Xin, SUN Mao. Very small insects use novel wing flapping anddrag principle to generate the weight-supporting vertical force[J]. Journal of fluid mechanics, 2018, 855: 646–670.
[131] LEHMANN F O, SANE S P, DICKINSON M. The aerodynamic effects of wing–wing interaction in flapping insect wings[J]. Journal of experimental biology, 2005, 208(16): 3075–3092.
[132] SANE S P, DICKINSON M H. The control of flight force by a flapping wing: lift and drag production[J]. The journal of experimental biology, 2001, 204(15): 2607–2626.
[133] DESBIENS A L, CHEN Yufeng, WOOD R J. A wing characterization method for flapping-wing robotic insects[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo: IEEE, 2014: 1367?1373.
[134] CLAWSON T S, FULLER S B, WOOD R J, et al. A blade element approach to modeling aerodynamic flight of an insect-scale robot[C]//2017 American Control Conference. Seattle: IEEE, 2017: 2843?2849.
[135] FINIO B M, EUM B, OLAND C, et al. Asymmetric flapping for a robotic fly using a hybrid power-control actuator[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis: IEEE, 2009: 2755?2762.
[136] FINIO B M, WOOD R J. Open-loop roll, pitch and yaw torques for a robotic bee[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve: IEEE, 2012: 113?119.
[137] FINIO B M, WHITNEY J P, WOOD R J. Stroke plane deviation for a microrobotic fly[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei: IEEE, 2010: 3378?3385.
[138] WHITNEY J P, WOOD R J. Aeromechanics of passive rotation in flapping flight[J]. Journal of fluid mechanics, 2010, 660: 197–220.
[139] WHITNEY J P, WOOD R J. Conceptual design of flapping-wing micro air vehicles[J]. Bioinspiration & biomimetics, 2012, 7(3): 036001.
[140] CHIRARATTANANON P, WOOD R J. Identification of flight aerodynamics for flapping-wing microrobots[C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013: 1389?1396.
[141] ORLOWSKI C T, GIRARD A R. Modeling and simulation of nonlinear dynamics of flapping wing micro air vehicles[J]. AIAA journal, 2011, 49(5): 969–981.
[142] HASSAN A M, TAHA H E. Differential-geometric-control formulation of flapping flight multi-body dynamics[J]. Journal of nonlinear science, 2019, 29(4): 1379–1417.
[143] BHATTI M Y, LEE S G, HAN J H. Dynamic stability and flight control of biomimetic flapping-wing micro air vehicle[J]. Aerospace, 2021, 8(12): 362.
[144] WISSA B E, ELSHAFEI K O, EL-BADAWY A A. Lyapunov-based control and trajectory tracking of a 6-DOF flapping wing micro aerial vehicle[J]. Nonlinear dynamics, 2020, 99(4): 2919–2938.
[145] A modified ALE method for fluid flows around bodies moving in close proximity[J]. Computers and structures, 2014, 145(C): 1–11.
[146] MAO Sun, XIN Yu. Flows around two airfoils performing fling and subsequent translation and translation and subsequent clap[J]. Acta mechanica sinica, 2003, 19(2): 103–117.
[147] MITTAL R, IACCARINO G. Immersed boundary methods[J]. Annual review of fluid mechanics, 2005, 37: 239–261.
[148] GRIFFITH B E, PATANKAR N A. Immersed methods for fluid-structure interaction[J]. Annual review of fluid mechanics, 2020, 52: 421–448.
[149] HUANG Weixi, TIAN Fangbao. Recent trends and progress in the immersed boundary method[J]. Proceedings of the institution of mechanical engineers, part C:journal of mechanical engineering science, 2019, 233(23/24): 7617–7636.
[150] COMBES S A, DANIEL T L. Flexural stiffness in insect wings. I. Scaling and the influence of wing venation[J]. The journal of experimental biology, 2003, 206(17): 2979–2987.
[151] COMBES S A, DANIEL T L. Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending[J]. The journal of experimental biology, 2003, 206(17): 2989–2997.
[152] LIETZ C, SCHABER C F, GORB S N, et al. The damping and structural properties of dragonfly and damselfly wings during dynamic movement[J]. Communications biology, 2021, 4(1): 1–14.
[153] WOOTTON R J, HERBERT R C, YOUNG P G, et al. Approaches to the structural modelling of insect wings[J]. Philosophical transactions of the Royal Society of London Series B, Biological sciences, 2003, 358(1437): 1577–1587.
[154] WOOTTON R. The geometry and mechanics of insect wing deformations in flight: a modelling approach[J]. Insects, 2020, 11(7): 446–464.
[155] KESEL A B. Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils[J]. The journal of experimental biology, 2000, 203(20): 3125–3135.
[156] ZHILYAEV I, KRUSHINSKY D, RANJBAR M, et al. Hybrid machine-learning and finite-element design for flexible metamaterial wings[J]. Materials & design, 2022, 218: 110709.
[157] RAJABI H, GORB S N. How do dragonfly wings work? A brief guide to functional roles of wing structural components[J]. International journal of odonatology, 2020, 23(1): 23–30.
[158] REID H E, SCHWAB R K, MAXCER M, et al. Wing flexibility reduces the energetic requirements of insect flight[J]. Bioinspiration & biomimetics, 2019, 14(5): 056007.
[159] WOOD R J, AVADHANULA S, STELTZ E, et al. An autonomous palm-sized gliding micro air vehicle[J]. IEEE robotics & automation magazine, 2007, 14(2): 82–91.
[160] NGUYEN K, AU L T K, PHAN H V, et al. Effects of wing kinematics, corrugation, and clap-and-fling on aerodynamic efficiency of a hovering insect-inspired flapping-wing micro air vehicle[J]. Aerospace science and technology, 2021, 118: 106990.
[161] LI Hao, NABAWY M R A. Effects of stroke amplitude and wing planform on the aerodynamic performance of hovering flapping wings[J]. Aerospace, 2022, 9(9): 479.
[162] TUNCER I H, KAYA M. Thrust generation caused by flapping airfoils in a biplane configuration[J]. Journal of aircraft, 2003, 40(3): 509–515.
[163] KAYA M, TUNCER I H, JONES K D, et al. Optimization of flapping motion parameters for two airfoils in a biplane configuration[J]. Journal of aircraft, 2009, 46(2): 583–592.
[164] TUNCER I H, PLATZER M F. Thrust generation due to airfoil flapping[J]. AIAA journal, 1996, 34(2): 324–331.
[165] TAY W B, HESTER B, VAN OUDHEUSDEN B. Analysis of biplane flapping flight with tail[C]//42nd AIAA Fluid Dynamics Conference and Exhibit. New Orlean: AIAA, 2012: 2968.
[166] BLUMAN J E, SRIDHAR M K, KANG C K. Chordwise wing flexibility may passively stabilize hovering insects[J]. Journal of the royal society, interface, 2018, 15(147): 20180409.
[167] GOPALAKRISHNAN P, TAFTI D K. Effect of wing flexibility on lift and thrust production in flapping flight[J]. AIAA journal, 2010, 48(5): 865–877.
[168] NAKATA T, LIU Hao. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach[J]. Proceedings biological sciences, 2012, 279(1729): 722–731.
[169] NOYON T A, TAY W B, VAN OUDHEUSDEN B W, et al. Effect of chordwise deformation on unsteady aerodynamic mechanisms in hovering flapping flight[J]. International journal of micro air vehicles, 2014, 6(4): 265–277.
[170] SHAHZAD A, TIAN Fangbao, YOUNG J, et al. Effects of hawkmoth-like flexibility on the aerodynamic performance of flapping wings with different shapes and aspect ratios[J]. Physics of fluids, 2018, 30(9): 091902.
[171] MILLER L A, PESKIN C S. A computational fluid dynamics of ‘clap and fling’ in the smallest insects[J]. The Journal of experimental biology, 2005, 208(2): 195–212.
[172] LEHMANN F O, WANG Hao, ENGELS T. Vortex trapping recaptures energy in flying fruit flies[J]. Scientific reports, 2021, 11(1): 1–7.
[173] DONG Y, SONG B, XUE D, et al. 3D numerical simulation of a hovering hummingbird-inspired flapping wing with dynamic morphing[J]. Journal of applied fluid mechanics, 2022, 15(3): 873–888.
[174] VANELLA M, FITZGERALD T, PREIDIKMAN S, et al. Influence of flexibility on the aerodynamic performance of a hovering wing[J]. The Journal of experimental biology, 2009, 212(1): 95–105.
[175] YAO J, YEO K S. Free hovering of hummingbird hawkmoth and effects of wing mass and wing elevation[J]. Computers & fluids, 2019, 186: 99–127.
[176] ZHENG Lingxiao, HEDRICK T L, MITTAL R. A multi-fidelity modelling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight[J]. Journal of fluid mechanics, 2013, 721: 118–154.
[177] RUTKOWSKI M, GRYGLAS W, SZUMBARSKI J, et al. Open-loop optimal control of a flapping wing using an adjoint Lattice Boltzmann method[J]. Computers & mathematics with applications, 2020, 79(12): 3547–3569.
[178] MILLER L A, PESKIN C S. Flexible clap and fling in tiny insect flight[J]. The Journal of experimental biology, 2009, 212(19): 3076–3090.
[179] TAY W B, VAN OUDHEUSDEN B W, BIJL H. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method[J]. Bioinspiration & biomimetics, 2014, 9(3): 036001.
[180] TAY W B, DE BAAR J H S, PERCIN M, et al. Numerical simulation of a flapping micro aerial vehicle through wing deformation capture[J]. AIAA journal, 2018, 56(8): 3257–3270.
[181] SANTHANAKRISHNAN A, JONES S, DICKSON W, et al. Flow structure and force generation on flapping wings at low Reynolds numbers relevant to the flight of tiny insects[J]. Fluids, 2018, 3(3): 45.
[182] XUE Dong, SONG Bifeng, SONG Wenping, et al. Computational simulation and free flight validation of body vibration of flapping-wing MAV in forward flight[J]. Aerospace science and technology, 2019, 95: 105491.
[183] LEHMANN F O, PICK S. The aerodynamic benefit of wing–wing interaction depends on stroke trajectory in flapping insect wings[J]. Journal of experimental biology, 2007, 210(8): 1362–1377.
[184] LEHMANN F O. When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings[J]. The journal of experimental biology, 2008, 211(2): 224–233.
[185] YAMAMOTO M, ISOGAI K. Direct measurement of unsteady fluid dynamic forces for a hovering dragonfly[J]. AIAA journal, 2005, 43(12): 2475–2480.
[186] JONGERIUS S R, LENTINK D. Structural analysis of a dragonfly wing[J]. Experimental mechanics, 2010, 50(9): 1323–1334.
[187] RIVAL D, MANEJEV R, TROPEA C. Measurement of parallel blade–vortex interaction at low Reynolds numbers[J]. Experiments in fluids, 2010, 49(1): 89–99.
[188] BOON L K, JADHAV S. Experimental study on the wing-wake interaction of a flapping wing Micro Aerial Vehicle[C]//2017 International Conference on Unmanned Aircraft Systems. Miami: IEEE, 2017: 1292?1301.
[189] MUNIAPPAN A, BASKAR V, DURIYANANDHAN V. Lift and thrust characteristics of flapping wing micro air vehicle (MAV)[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005: 1055.
[190] DENG Shuanghou, WANG Jun, LIU Hanru. Experimental study of a bio-inspired flapping wing MAV by means of force and PIV measurements[J]. Aerospace science and technology, 2019, 94: 105382.
[191] DENG Shuanghou, PERCIN M, VAN OUDHEUSDEN B, et al. Experimental investigation on the aerodynamics of a bio-inspired flexible flapping wing micro air vehicle[J]. International journal of micro air vehicles, 2014, 6(2): 105–115.
[192] NIAN Peng, SONG Bifeng, XUAN Jianlin, et al. A wind tunnel experimental study on the flexible flapping wing with an attached airfoil to the root[J]. IEEE access, 2019, 7: 47891–47903.
[193] PERCIN M, HU Y, VAN OUDHEUSDEN B W, et al. Wing flexibility effects in clap-and-fling[J]. International journal of micro air vehicles, 2011, 3(4): 217–227.
[194] ADDO-AKOTO R, HAN J S, HAN J H. Roles of wing flexibility and kinematics in flapping wing aerodynamics[J]. Journal of fluids and structures, 2021, 104: 103317.
[195] ZHAO Liang, HUANG Qingfeng, DENG Xinyan, et al. Aerodynamic effects of flexibility in flapping wings[J]. Journal of the royal society, interface, 2010, 7(44): 485–497.
[196] HU Hui, KUMAR A G, ABATE G, et al. An experimental investigation on the aerodynamic performances of flexible membrane wings in flapping flight[J]. Aerospace science and technology, 2010, 14(8): 575–586.
[197] RYU S W, LEE J G, KIM H J. Design, fabrication, and analysis of flapping and folding wing mechanism for a robotic bird[J]. Journal of bionic engineering, 2020, 17(2): 229–240.
[198] NGUYEN A T, HAN J H. Wing flexibility effects on the flight performance of an insect-like flapping-wing micro-air vehicle[J]. Aerospace science and technology, 2018, 79: 468–481.
[199] HEATHCOTE S, GURSUL I. Flexible flapping airfoil propulsion at low Reynolds numbers[J]. AIAA journal, 2007, 45(5): 1066–1079.
[200] HEATHCOTE S, WANG Z, GURSUL I. Effect of spanwise flexibility on flapping wing propulsion[J]. Journal of fluids and structures, 2008, 24(2): 183–199.
[201] ADITYA K, MALOLAN V. Investigation of strouhal number effect on flapping wing micro air vehicle[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2007: 486.
[202] LIN Cheshu, HWU C, YOUNG W B. The thrust and lift of an ornithopter’s membrane wings with simple flapping motion[J]. Aerospace science and technology, 2006, 10(2): 111–119.
[203] PERCIN M, EISMA J, VAN OUDHEUSDEN B, et al. Flow visualization in the wake of the flapping-wing MAV ‘DelFly II’ in forward flight[C]//30th AIAA Applied Aerodynamics Conference. New Orleans: AIAA, 2012: 132?143.
[204] MAZAHERI K, EBRAHIMI A. Experimental investigation on aerodynamic performance of a flapping wing vehicle in forward flight[J]. Journal of fluids and structures, 2011, 27(4): 586–595.
[205] FOROUZI FESHALAMI B, DJAVARESHKIAN M H, ZAREE A H, et al. The role of wing bending deflection in the aerodynamics of flapping micro aerial vehicles in hovering flight[J]. Proceedings of the institution of mechanical engineers, part G:journal of aerospace engineering, 2019, 233(10): 3749–3761.
[206] KHAN Q, AKMELIAWATI R. Review on system identification and mathematical modeling of flapping wing micro-aerial vehicles[J]. Applied sciences, 2021, 11(4): 1546.
[207] ARMANINI S F, KARáSEK M, VISSER C C D. Global LPV model identification of flapping-wing dynamics using flight data [M]. 2018 AIAA Modeling and Simulation Technologies Conference.
[208] DIETL J M, GARCIA E. Stability in ornithopter longitudinal flight dynamics[J]. Journal of guidance, control, and dynamics, 2008, 31(4): 1157–1163.
[209] GEBERT G, GALLMEIER P, EVERS J. Equations of motion for flapping flight[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Monterey: AIAA, 2002: 4872.
[210] GRAUER J, ULRICH E, HUBBARD J JR, et al. Testing and system identification of an ornithopter in longitudinal flight[J]. Journal of aircraft, 2011, 48(2): 660–667.
[211] GRAUER J, ULRICH E, HUBBARD J, et al. System identification of an ornithopter aerodynamics model[C]//AIAA Atmospheric Flight Mechanics Conference. Toronto: AIAA, 2010: 7632.
[212] BOLENDER M. Rigid multi-body equations-of-motion for flapping wing MAVs using Kane’s equations[C]//AIAA Guidance, Navigation, and Control Conference. Chicago: AIAA, 2009: 6158.
[213] SU Weihua, CESNIK C. Nonlinear aeroelastic simulations of a flapping wing micro air vehicle using two unsteady aerodynamic formulations[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Orlando: AIAA, 2010: 2887.
[214] SU Weihua, CESNIK C. Flight dynamic stability of a flapping wing micro air vehicle in hover[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Denver: AIAA, 2011: 2009.
[215] OGUNWA T, ABDULLAH E, CHAHL J. Modeling and control of an articulated multibody aircraft[J]. Applied sciences, 2022, 12(3): 1162.
[216] HE Wei, MENG Tingting, HE Xiuyu, et al. Iterative learning control for a flapping wing micro aerial vehicle under distributed disturbances[J]. IEEE transactions on cybernetics, 2019, 49(4): 1524–1535.
[217] HE Wei, MU Xinxing, CHEN Yunan, et al. Modeling and vibration control of the flapping-wing robotic aircraft with output constraint[J]. Journal of sound and vibration, 2018, 423: 472–483.
[218] HE Wei, WANG Tingting, HE Xiuyu, et al. Dynamical modeling and boundary vibration control of a rigid-flexible wing system[J]. IEEE/ASME transactions on mechatronics, 2020, 25(6): 2711–2721.
[219] DENG Xinyan, SCHENATO L, WU W C, et al. Flapping flight for biomimetic robotic insects: part I-system modeling[J]. IEEE transactions on robotics, 2006, 22(4): 776–788.
[220] KHAN Z A, AGRAWAL S K. Control of longitudinal flight dynamics of a flapping-wing micro air vehicle using time-averaged model and differential flatness based controller[C]//2007 American Control Conference. New York: IEEE, 2007: 5284?5289.
[221] KAJAK K M, KARáSEK M, CHU Q P, et al. A minimal longitudinal dynamic model of a tailless flapping wing robot for control design[J]. Bioinspiration & biomimetics, 2019, 14(4): 046008.
[222] CHIRARATTANANON P, MA K Y, WOOD R J. Adaptive control for takeoff, hovering, and landing of a robotic fly[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo: IEEE, 2014: 3808?3815.
[223] FEARING R S, CHIANG K H, DICKINSON M H, et al. Wing transmission for a micromechanical flying insect[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). San Francisco: IEEE, 2002: 1509?1516.
[224] CAETANO J, ARMANINI S, DE VISSER C, et al. Data-informed quasi-steady aerodynamic model of a clap-and-fling flapping wing MAV[C]//International Conference on Unmanned Intelligent Systems (ICIUS). Bali: ICIUS, 2015.
[225] FINIO B M, PéREZ-ARANCIBIA N O, WOOD R J. System identification and linear time-invariant modeling of an insect-sized flapping-wing micro air vehicle[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco: IEEE, 2011: 1107?1114.
[226] KHATAIT J P, MUKHERJEE S, SETH B. Compliant design for flapping mechanism: a minimum torque approach[J]. Mechanism and machine theory, 2006, 41(1): 3–16.
[227] TANTANAWAT T, KOTA S. Design of compliant mechanisms for minimizing input power in dynamic applications[J]. Journal of mechanical design, 2007, 129(10): 1064–1075.
[228] MADANGOPAL R, KHAN Z A, AGRAWAL S K. Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics[J]. Journal of mechanical design, 2005, 127(4): 809–816.
[229] BISWAL S, MIGNOLET M, RODRIGUEZ A A. Modeling and control of flapping wing micro aerial vehicles[J]. Bioinspiration & biomimetics, 2019, 14(2): 026004.
[230] FULLER S B, TEOH Z E, CHIRARATTANANON P, et al. Stabilizing air dampers for hovering aerial robotics: design, insect-scale flight tests, and scaling[J]. Autonomous robots, 2017, 41(8): 1555–1573.
[231] JAFFERIS N T, GRAULE M A, WOOD R J. Non-linear resonance modeling and system design improvements for underactuated flapping-wing vehicles[C]//2016 IEEE International Conference on Robotics and Automation. Stockholm: IEEE, 2016: 3234-3241.
[232] TAHA H E. Geometric nonlinear control of the lift dynamics of a pitching-plunging wing[C]//AIAA Scitech 2020 Forum. Orlando: AIAA, 2020: 0824.
[233] LEE J, RYU S, KIM H J. Stable flight of a flapping-wing micro air vehicle under wind disturbance[J]. IEEE robotics and automation letters, 2020, 5(4): 5685–5692.
[234] FARUQUE I, SEAN HUMBERT J. Dipteran insect flight dynamics. Part 1 Longitudinal motion about hover[J]. Journal of theoretical biology, 2010, 264(2): 538–552.
[235] KOU Jiaqing, ZHANG Weiwei. Data-driven modeling for unsteady aerodynamics and aeroelasticity[J]. Progress in aerospace sciences, 2021, 125: 100725.
[236] ARMANINI S F, DE VISSER C C, DE CROON G. Black-box LTI modelling of flapping-wing micro aerial vehicle dynamics[C]//AIAA Atmospheric Flight Mechanics Conference. Kissimmee: AIAA, 2015: 0234.
[237] NIJBOER J, ARMANINI S F, KARASEK M, et al. Longitudinal grey-box model identification of a tailless flapping-wing MAV based on free-flight data[C]//AIAA Scitech 2020 Forum. Orlando: AIAA, 2020: 1964.
[238] ARMANINI S F, KARáSEK M, DE VISSER C C. Global linear parameter-varying modeling of flapping-wing dynamics using flight data[J]. Journal of guidance, control, and dynamics, 2018, 41(11): 2338–2360.
[239] CAETANO J V, DE VISSER C C, DE CROON G C H E, et al. Linear aerodynamic model identification of a flapping wing MAV based on flight test data[J]. International journal of micro air vehicles, 2013, 5(4): 273–286.
[240] CAETANO J, VERBOOM J, VISSER C C, et al. Near-hover flapping wing MAV aerodynamic modelling: a linear model approach[C]// Proceedings of the International Micro Air Vehicle Conference and Flight Competition. Toulouse: IMAV, 2013.
[241] CAETANO J V, REMES B D, DE VISSER C C, et al. Modeling a flapping wing MAV: flight path reconstruction of the delfly II[C]//AIAA Modeling and Simulation Technologies (MST) Conference. Boston: AIAA, 2013: 4597.
[242] CAETANO J V, DE VISSER C C, REMES B D, et al. Controlled flight maneuvers of a flapping wing micro air vehicle: a step towards the delfly II identification[C]//AIAA Atmospheric Flight Mechanics (AFM) Conference. Boston: AIAA, 2013: 4843.
[243] ARMANINI S F, CAETANO J V, DE VISSER C C, et al. Modelling wing wake and tail aerodynamics of a flapping-wing micro aerial vehicle[J]. International journal of micro air vehicles, 2019, 11: 175682931983367.
[244] DICKINSON M H. Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster[J]. Philosophical transactions of the Royal Society of London Series B, Biological sciences, 1999, 354(1385): 903–916.
[245] SANE S P, DIEUDONNé A, WILLIS M A, et al. Antennal mechanosensors mediate flight control in moths[J]. Science, 2007, 315(5813): 863–866.
[246] HINTERWIRTH A J, DANIEL T L. Antennae in the hawkmoth Manduca sexta (Lepidoptera, Sphingidae) mediate abdominal flexion in response to mechanical stimuli[J]. Journal of comparative physiology A, 2010, 196(12): 947–956.
[247] WAJNBERG E, ACOSTA-AVALOS D, ALVES O C, et al. Magnetoreception in eusocial insects: an update[J]. Journal of the royal society, interface, 2010, 7(Suppl 2): S207–S225.
[248] WEHNER R. Neurobiology of polarization vision[J]. Trends in neurosciences, 1989, 12(9): 353–359.
[249] ORCHARD G, BARTOLOZZI C, INDIVERI G. Applying neuromorphic vision sensors to planetary landing tasks[C]//2009 IEEE Biomedical Circuits and Systems Conference. Beijing: IEEE, 2009: 201?204.
[250] VALETTE F, RUFFIER F, VIOLLET S, et al. Biomimetic optic flow sensing applied to a lunar landing scenario[C]//2010 IEEE International Conference on Robotics and Automation. Anchorage: IEEE, 2010: 2253?2260.
[251] IZZO D, WEISS N, SEIDL T. Constant-optic-flow lunar landing: optimality and guidance[J]. Journal of guidance, control, and dynamics, 2011, 34(5): 1383–1395.
[252] COLLETT T S. Insect vision: controlling actions through optic flow[J]. Current biology, 2002, 12(18): R615–R617.
[253] DE CROON G C H E, DE WEERDT E, DE WAGTER C, et al. The appearance variation cue for obstacle avoidance[J]. IEEE transactions on robotics, 2012, 28(2): 529–534.
[254] DE CROON G, DE WAGTER C, REMES B, et al. Random sampling for indoor flight[C]//International Micro Air Vehicle Conference. Braunschweig: IMAV, 2010.
[255] GARCIA BERMUDEZ F, FEARING R. Optical flow on a flapping wing robot[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis: IEEE, 2009: 5027?5032.
[256] DUHAMEL P E J, PéREZ-ARANCIBIA N O, BARROWS G L, et al. Altitude feedback control of a flapping-wing microrobot using an on-board biologically inspired optical flow sensor[C]//2012 IEEE International Conference on Robotics and Automation. Saint Paul: IEEE, 2012: 4228?4235.
[257] HO H W, DE CROON G C, VAN KAMPEN E, et al. Adaptive gain control strategy for constant optical flow divergence landing[J]. IEEE transactions on robotics, 2018, 34(2): 508–516.
[258] VERVELD M, CHU Qiping, DE WAGTER C, et al. Optic flow based state estimation for an indoor micro air vehicle[C]//AIAA Guidance, Navigation, and Control Conference. Toronto: AIAA, 2010: 8209.
[259] FULLER S B, KARPELSON M, CENSI A, et al. Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli[J]. Journal of the royal society, interface, 2014, 11(97): 20140281.
[260] FULLER S B, SANDS A, HAGGERTY A, et al. Estimating attitude and wind velocity using biomimetic sensors on a microrobotic bee[C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013: 1374?1380.
[261] RUFFIER F, FRANCESCHINI N. Aerial robot piloted in steep relief by optic flow sensors[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice: IEEE, 2008: 1266?1273.
[262] HYSLOP A M, HUMBERT J S. Autonomous navigation in three-dimensional urban environments using wide-field integration of optic flow[J]. Journal of guidance, control, and dynamics, 2010, 33(1): 147–159.
[263] WU W C, SCHENATO L, WOOD R J, et al. Biomimetic sensor suite for flight control of a micromechanical flying insect: design and experimental results[C]//2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422). Taipei: IEEE, 2003: 1146?1151.
[264] SCHENATO L, WU W C, SASTRY S. Attitude control for a micromechanical flying insect via sensor output feedback[J]. IEEE transactions on robotics and automation, 2004, 20(1): 93–106.
[265] DENG Xinyan, SCHENATO L, SASTRY S S. Flapping flight for biomimetic robotic insects: part II-flight control design[J]. IEEE transactions on robotics, 2006, 22(4): 789–803.
[266] GREMILLION G, GALFOND M, KRAPP H G, et al. Biomimetic sensing and modeling of the ocelli visual system of flying insects[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve: IEEE, 2012: 1454?1459.
[267] MOORE R J D, THURROWGOOD S, BLAND D, et al. A fast and adaptive method for estimating UAV attitude from the visual horizon[C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco: IEEE, 2011: 4935?4940.
[268] CLAWSON T S, FERRARI S, FULLER S B, et al. Spiking neural network (SNN) control of a flapping insect-scale robot[C]//2016 IEEE 55th Conference on Decision and Control. Las Vega: IEEE, 2016: 3381?3388.
[269] TIJMONS S, DE CROON G, REMES B, et al. Off-board processing of stereo vision images for obstacle avoidance on a flapping wing mav[C]//Pegasus AIAA conference. Prague: AIAA, 2013: 1?16.
[270] TIJMONS S, DE CROON G, REMES B, et al. Stereo vision based obstacle avoidance on flapping wing MAVs[C]//Advances in Aerospace Guidance, Navigation and Control. Berlin: Springer, 2013: 463-482.
[271] FULLER S, HELBLING E F, CHIRARATTANANON P, et al. Using a MEMS gyroscope to stabilize the attitude of a fly-sized hovering robot[EB/OL]. (2014?08?12)[2022?12?6].https://www.semanticscholar.org/paper/Using-a-MEMS-gyroscope-to-stabilize-the-attitude-of-Fuller-Helbling/c91e84922ae6ac8642895810f83acb6bb03826e7.
[272] VERBOOM J L, TIJMONS S, DE WAGTER C, et al. Attitude and altitude estimation and control on board a Flapping Wing Micro Air Vehicle[C]//2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 5846?5851.
[273] PéREZ-ARANCIBIA N O, WHITNEY J P, WOOD R J. Lift force control of a flapping-wing microrobot[C]//Proceedings of the 2011 American Control Conference. San Francisco: IEEE, 2011: 4761?4768.
[274] 付强, 陈向阳, 郑子亮, 等. 仿生扑翼飞行器的视觉感知系统研究进展[J]. 工程科学学报, 2019, 41(12): 1512–1519
FU Qiang, CHEN Xiangyang, ZHENG Ziliang, et al. Research progress on visual perception system of bionic flapping wing aircraft[J]. Chinese journal of engineering science, 2019, 41(12): 1512–1519
[275] PéREZ-ARANCIBIA N O, MA K Y, GALLOWAY K C, et al. First controlled vertical flight of a biologically inspired microrobot[J]. Bioinspiration & biomimetics, 2011, 6(3): 036009.
[276] CHIRARATTANANON P, MA K Y, CHENG R, et al. Wind disturbance rejection for an insect-scale flapping-wing robot[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg: IEEE, 2015: 60?67.
[277] ROSEN M H, LE PIVAIN G, SAHAI R, et al. Development of a 3.2g untethered flapping-wing platform for flight energetics and control experiments[C]//2016 IEEE International Conference on Robotics and Automation. Stockholm: IEEE, 2016: 3227?3233.
[278] DE WAGTER C, KOOPMANS A, DE CROON G, et al. Autonomous wind tunnel free-flight of a flapping wing MAV[C]//Advances in Aerospace Guidance, Navigation and Control. Berlin: Springer, 2013: 603?621.
[279] FINIO B M, SHANG J K, WOOD R J. Body torque modulation for a microrobotic fly[C]//2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009: 3449?3456.
[280] MA K Y, FELTON S M, WOOD R J. Design, fabrication, and modeling of the split actuator microrobotic bee[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve: IEEE, 2012: 1133?1140.
[281] OPPENHEIMER M W, DOMAN D B, SIGTHORSSON D O. Dynamics and control of a biomimetic vehicle using biased wingbeat forcing functions[J]. Journal of guidance, control, and dynamics, 2011, 34(1): 204–217.
[282] OPPENHEIMER M, DOMAN D, SIGTHORSSON D. Dynamics and control of a biomimetic vehicle using biased wingbeat forcing functions: Part I-aerodynamic model[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Florida: AIAA, 2010: 1023.
[283] DOMAN D, OPPENHEIMER M, SIGTHORSSON D. Dynamics and control of a biomimetic vehicle using biased wingbeat forcing functions: part II - controller[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando: AIAA, 2010: 1024.
[284] PéREZ-ARANCIBIA N O, CHIRARATTANANON P, FINIO B M, et al. Pitch-angle feedback control of a Biologically Inspired flapping-wing microrobot[C]//2011 IEEE International Conference on Robotics and Biomimetics. Karon Beach: IEEE, 2012: 1495?1502.
[285] FULLER S B, WHITNEY J P, WOOD R J. Rotating the heading angle of underactuated flapping-wing flyers by wriggle-steering[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg: IEEE, 2015: 1292?1299.
[286] MCGILL R, HYUN N S P, WOOD R J. Modeling and control of flapping-wing micro-aerial vehicles with harmonic sinusoids[J]. IEEE robotics and automation letters, 2022, 7(2): 746–753.
[287] SHEN Yaolei, GE Wenjie, MIAO Pu. Multibody-dynamic modeling and stability analysis for a bird-scale flapping-wing aerial vehicle[J]. Journal of intelligent & robotic systems, 2021, 103(1): 9.
[288] NOGAR S M, SERRANI A, GOGULAPATI A, et al. Design and evaluation of a model-based controller for flapping-wing micro air vehicles[J]. Journal of guidance, control, and dynamics, 2018, 41(12): 2513–2528.
[289] ABBASI S H, MAHMOOD A, KHALIQ A, et al. LQR controller for stabilization of bio-inspired flapping wing UAV in gust environments[J]. Journal of intelligent & robotic systems, 2022, 105(4): 79.
[290] KAMANKESH Z, BANAZADEH A. Stability analysis for design improvement of bio-inspired flapping wings by energy method[J]. Aerospace science and technology, 2021, 111: 106558.
[291] AU L T K, PARK H C. Influence of center of gravity location on flight dynamic stability in a hovering tailless FW-MAV: longitudinal motion[J]. Journal of bionic engineering, 2019, 16(1): 130–144.
[292] AU L T K, PARK H C. Influence of center of gravity location on flight dynamic stability in a hovering tailless FW-MAV: Lateral motion . Journal of Bionic Engineering, 2020, 17(1): 148-160.
[293] FENG Cong, WANG Qing, HU Changhua, et al. Active disturbance rejection attitude control for flapping wing micro aerial vehicle with nonaffine-in-control characteristics[J]. IEEE access, 2020, 8: 20013–20027.
[294] CHIRARATTANANON P, CHEN Yufeng, HELBLING E F, et al. Dynamics and flight control of a flapping-wing robotic insect in the presence of wind gusts[J]. Interface focus, 2017, 7(1): 20160080.
[295] CHIRARATTANANON P, MA K Y, WOOD R J. Adaptive control of a millimeter-scale flapping-wing robot[J]. Bioinspiration & biomimetics, 2014, 9(2): 025004.
[296] PéREZ-ARANCIBIA N O, WHITNEY J P, WOOD R J. Lift force control of flapping-wing microrobots using adaptive feedforward schemes[J]. IEEE/ASME transactions on mechatronics, 2013, 18(1): 155–168.
[297] PéREZ-ARANCIBIA N O, DUHAMEL P E J, MA K Y, et al. Model-free control of a hovering flapping-wing microrobot[J]. Journal of intelligent & robotic systems, 2015, 77(1): 95–111.
[298] WANG Tianhe, JIN Shangtai, HOU Zhongsheng. Model free adaptive pitch control of a flapping wing micro aerial vehicle with input saturation[C]//2020 IEEE 9th Data Driven Control and Learning Systems Conference. Liuzhou: IEEE, 2020: 627?632.
[299] HE Wei, YAN Zichen, SUN Changyin, et al. Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer[J]. IEEE transactions on cybernetics, 2017, 47(10): 3452–3465.
[300] DE CROON G C H E, HO H W, DE WAGTER C, et al. Optic-flow based slope estimation for autonomous landing[J]. International journal of micro air vehicles, 2013, 5(4): 287–297.
[301] DE CROON G, ALAZARD D, IZZO D. Controlling spacecraft landings with constantly and exponentially decreasing time-to-contact[J]. IEEE transactions on aerospace and electronic systems, 2015, 51(2): 1241–1252.
[302] DE CROON G C H E, DE WAGTER C, REMES B D W, et al. Sky Segmentation Approach to obstacle avoidance[C]//2011 Aerospace Conference. Big Sky: IEEE, 2011: 1?16.
[303] ZUFFEREY J C, FLOREANO D. Toward 30-gram autonomous indoor aircraft: vision-based obstacle avoidance and altitude control[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona: IEEE, 2006: 2594?2599.
[304] RUFFIER F, FRANCESCHINI N. Optic flow regulation: the key to aircraft automatic guidance[J]. Robotics and autonomous systems, 2005, 50(4): 177–194.
[305] FRANCESCHINI N, RUFFIER F, SERRES J. A bio-inspired flying robot sheds light on insect piloting abilities[J]. Current biology:CB, 2007, 17(4): 329–335.
[306] DE CROON G C H E, DE WAGTER C, REMES B D W, et al. Sub-sampling: real-time vision for micro air vehicles[J]. Robotics and autonomous systems, 2012, 60(2): 167–181.
[307] CHIRARATTANANON P, MA K Y, WOOD R J. Perching with a robotic insect using adaptive tracking control and iterative learning control[J]. The international journal of robotics research, 2016, 35(10): 1185–1206.
[308] CHIRARATTANANON P, MA K Y, WOOD R J. Single-loop control and trajectory following of a flapping-wing microrobot[C]//2014 IEEE International Conference on Robotics and Automation. Hong Kong: IEEE, 2014: 37?44.
[309] HE Wei, MU Xinxing, ZHANG Liang, et al. Modeling and trajectory tracking control for flapping-wing micro aerial vehicles[J]. IEEE/CAA journal of automatica sinica, 2020, 8(1): 148–156.
[310] HE Wei, YAN Zichen, SUN Changyin. Trajectory tracking control of a flapping wing micro aerial vehicle via neural networks[C]//2016 International Conference on Advanced Robotics and Mechatronics. Macau: IEEE, 2016: 443?448.
[311] 段海滨, 李沛. 基于生物群集行为的无人机集群控制[J]. 科技导报, 2017, 35(07): 17–25
DUAN Haibin, LI Pei. Swarm control of UAV based on biological swarm behavior[J]. Science and technology review, 2017, 35(07): 17–25
[312] 尹曌, 贺威, 邹尧, 等. 基于“雁阵效应”的扑翼飞行机器人高效集群编队研究[J]. 自动化学报, 2021, 47(6): 1355–1367
YIN Zhao, HE Wei, ZOU Yao, et al. Efficient formation of flapping-wing aerial vehicles based on wild geese queue effect[J]. Acta automatica sinica, 2021, 47(6): 1355–1367
[313] GHOMMEM M, CALO V M. Flapping wings in line formation flight: a computational analysis[J]. The aeronautical journal, 2014, 118(1203): 485–501.
[314] TAY W-B, MURUGAYA K R, CHAN W-L, et al. Numerical simulation of flapping wing MAVs in V-formation[J]. Journal of bionic engineering, 2019, 16: 264–280.
[315] 王元鹏. 大型仿生扑翼飞行机器人自主编队飞行队形设计及实现 [D]. 哈尔滨工业大学, 2021.
WANG Yuanpeng. Design and Implementation of Autonomous Formation of Large Bionic Flapping Wing Flying Robots [D]. Harbin Institute of Technology, 2021.
[316] 尹曌. 仿生扑翼飞行器集群编队飞行能量高效利用机制研究[D]. 北京 北京科技大学, 2022.
YIN Zhao. Research on the efficient Energy utilization mechanism of bionic flapping wing Vehicle cluster Formation flight [D]. Beijing: University of Science and Technology Beijing, 2022.
[317] 杨之元, 段海滨, 范彦铭. 基于莱维飞行鸽群优化的仿雁群无人机编队控制器设计[J]. 中国科学:技术科学, 2018, 48(2): 161–169
YANG Zhiyuan, DUAN Haibin, FAN Yanming. Design of flying-like UAV formation Controller based on Levay Flying Pigeon Swarm Optimization[J]. Science China:Technical Sciences, 2018, 48(2): 161–169
[318] KIM H-Y, LEE J-S, CHOI H-L, et al. Autonomous formation flight of multiple flapping-wing flying vehicles using motion capture system[J]. Aerospace science and technology, 2014, 39: 596–604.
[319] TANAKA H, WOOD R J. Fabrication of corrugated artificial insect wings using laser micromachined molds[J]. Journal of micromechanics and microengineering, 2010, 20(7): 075008.
[320] ISHIHARA D. Computational approach for the fluid-structure interaction design of insect-inspired micro flapping wings[J]. Fluids, 2022, 7(1): 26.
[321] ZHANG Chao, ROSSI C. Effects of elastic hinges on input torque requirements for a motorized indirect-driven flapping-wing compliant transmission mechanism[J]. IEEE access, 2019, 7: 13068–13077.
[322] HASSANALIAN M, ABDELKEFI A. Towards improved hybrid actuation mechanisms for flapping wing micro air vehicles: analytical and experimental investigations[J]. Drones, 2019, 3(3): 73.
[323] BRUDER D, WOOD R J. The Chain-Link Actuator: Exploiting the Bending Stiffness of Mckibben Artificial Muscles to Achieve Larger Contraction Ratios[J]. IEEE robotics and automation letters, 2021, 7(1): 542–548.
[324] TAHA H E, KIANI M, HEDRICK T L, et al. Vibrational control: a hidden stabilization mechanism in insect flight[J]. Science robotics, 2020, 5(46): eabb1502.
[325] WOOD R J, FINIO B, KARPELSON M, et al. Progress on “pico” air vehicles[M]//Christensen H, Khatib O. Robotics Research. Cham: Springer, 2017: 3?19.
[326] CHEN Yufeng, DESBIENS A L, WOOD R J. A computational tool to improve flapping efficiency of robotic insects[C]//2014 IEEE International Conference on Robotics and Automation. Hong Kong: IEEE, 2014: 1733-1740.
[327] DUHAMEL P E J, PEREZ-ARANCIBIA C O, BARROWS G L, et al. Biologically inspired optical-flow sensing for altitude control of flapping-wing microrobots[J]. IEEE/ASME transactions on mechatronics, 2013, 18(2): 556–568.
[328] BEYELER A, ZUFFEREY J C, FLOREANO D. Vision-based control of near-obstacle flight[J]. Autonomous robots, 2009, 27(3): 201–219.
[329] MAGGIA M, EISA S A, TAHA H E. On higher-order averaging of time-periodic systems: reconciliation of two averaging techniques[J]. Nonlinear dynamics, 2020, 99(1): 813–836.
[330] KE Xijun, ZHANG Weiping, SHI Jinhao, et al. The modeling and numerical solution for flapping wing hovering wingbeat dynamics[J]. Aerospace science and technology, 2021, 110: 106474.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems