[1]MAO Yafei,BI Xiaojun.Rubbing oracle bone character recognition based on improved ResNeSt network[J].CAAI Transactions on Intelligent Systems,2023,18(3):450-458.[doi:10.11992/tis.202211041]
Copy

Rubbing oracle bone character recognition based on improved ResNeSt network

References:
[1] 谢乃和. 从殷墟走向世界的“绝学”甲骨文字研究: 韩国釜山“纪念甲骨文发现120周年国际学术研讨会”述评[J]. 管子学刊, 2020(3): 125–128
XIE Naihe. Flourishing from Yin Ruins to the world—a review of “Busan, South Korea international symposium commemorating the 120th anniversary of oracle bone inscription discovery”[J]. Guanzi journal, 2020(3): 125–128
[2] HUANG Shuangping, WANG Haobin, LIU Yongge, et al. OBC306: a large-scale oracle bone character recognition dataset[C]//2019 International Conference on Document Analysis and Recognition. Sydney: IEEE, 2019: 681?688.
[3] 顾绍通. 基于拓扑配准的甲骨文字形识别方法[J]. 计算机与数字工程, 2016, 44(10): 2001–2006
GU Shaotong. Identification of oracle-bone script fonts based on topological registration[J]. Computer & digital engineering, 2016, 44(10): 2001–2006
[4] 刘永革, 刘国英. 基于SVM的甲骨文字识别[J]. 安阳师范学院学报, 2017(2): 54–56
LIU Yongge, LIU Guoying. Oracle bone inscription recognition based on SVM[J]. Journal of Anyang Normal University, 2017(2): 54–56
[5] 顾绍通. 基于分形几何的甲骨文字形识别方法[J]. 中文信息学报, 2018, 32(10): 138–142
GU Shaotong. Identification of oracle-bone script fonts based on fractal geometry[J]. Journal of Chinese information processing, 2018, 32(10): 138–142
[6] LIU Mengting, LIU Guoying, LIU Yongge, et al. Oracle bone inscriptions recognition based on deep convolutional neural network[J]. Journal of image and graphics, 2020, 8(4): 114–119.
[7] YANG Zhen, FU Ting. Oracle detection and recognition based on improved Tiny-YOLOv4[C]//ICVIP 2020: 2020 The 4th International Conference on Video and Image Processing. New York: ACM, 2020: 128?133.
[8] SUN Wenjie, ZHAI Guangtao, GAO Zhongpai, et al. Dual-view oracle bone script recognition system via temporal-spatial psychovisual modulation[C]//2020 IEEE Conference on Multimedia Information Processing and Retrieval. Shenzhen: IEEE, 2020: 193?198.
[9] GAO Junheng, LIANG Xun. Distinguishing oracle variants based on the isomorphism and symmetry invariances of oracle-bone inscriptions[J]. IEEE access, 2020, 8: 152258–152275.
[10] 刘梦婷. 基于深度卷积神经网络的甲骨文字识别研究[D]. 郑州: 郑州大学, 2020.
LIU Mengting. Research on OBI recognition based on deep convolutional neural network[D]. Zhengzhou: Zhengzhou University, 2020.
[11] 王琦琦. 基于深度卷积神经网络的甲骨文精确识别[D]. 南昌: 江西科技师范大学, 2020.
WANG Qiqi. Accurate recognition of oracle based on deep convolutional neural network[D]. Nanchang: Jiangxi Normal University of Science and Technology, 2020.
[12] 高旭. 基于卷积神经网络的甲骨文识别研究与应用[D]. 长春: 吉林大学, 2021.
GAO Xu. Research and application of oracle bone inscriptions recognition based on convolution neural network[D]. Changchun: Jilin University, 2021.
[13] 王浩彬. 基于深度学习的甲骨文检测与识别研究[D]. 广州: 华南理工大学, 2019.
WANG Haobin. The research of oracle bone script detection and recognition based on deep learning methods[D]. Guangzhou: South China University of Technology, 2019.
[14] 张颐康, 张恒, 刘永革, 等. 基于跨模态深度度量学习的甲骨文字识别[J]. 自动化学报, 2021, 47(4): 791–800
ZHANG Yikang, ZHANG Heng, LIU Yongge, et al. Oracle character recognition based on cross-modal deep metric learning[J]. Acta automatica sinica, 2021, 47(4): 791–800
[15] LIU Dazheng. Random polygon cover for oracle bone character recognition[C]//CSAI 2021: 2021 5th International Conference on Computer Science and Artificial Intelligence. New York: ACM, 2021: 138?142.
[16] LI Jing, WANG Qiufeng, ZHANG Rui, et al. Mix-up augmentation for oracle character recognition with imbalanced data distribution[M]//Document Analysis and Recognition - ICDAR 2021. Cham: Springer International Publishing, 2021: 237?251.
[17] ZHANG Hang, WU Chongruo, ZHANG Zhongyue, et al. ResNeSt: split-attention networks[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022: 2735?2745.
[18] HOU Qibin, ZHOU Daquan, FENG Jiashi. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708?13717.
[19] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770?778.
[20] GUO Menghao, XU Tianxing, LIU Jiangjiang, et al. Attention mechanisms in computer vision: a survey[J]. Computational visual media, 2022, 8(3): 331–368.
[21] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132?7141.
[22] LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective kernel networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 510?519.
[23] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261?2269.
[24] HUANG Zilong, WANG Xinggang, HUANG Lichao, et al. CCNet: criss-cross attention for semantic segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 603?612.
[25] ZHU Qiuyu, ZU Xuewen. Fully convolutional neural network structure and its loss function for image classification[J]. IEEE access, 2022, 10: 35541–35549.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems