[1]LI Xiangyu,SUI Lin,XIONG Weili.Soft sensor algorithm based on self-attention mechanism and convolutional ONLSTM network[J].CAAI Transactions on Intelligent Systems,2023,18(5):957-965.[doi:10.11992/tis.202211037]
Copy

Soft sensor algorithm based on self-attention mechanism and convolutional ONLSTM network

References:
[1] KADLEC P, GABRYS B, STRANDT S. Data-driven soft sensors in the process industry[J]. Computers & chemical engineering, 2009, 33(4): 795-814.
[2] YUAN Xiaofeng, WANG Yalin, YANG Chunhua, et al. Weighted linear dynamic system for feature representation and soft sensor application in nonlinear dynamic industrial processes[J]. IEEE transactions on industrial electronics, 2018, 65(2): 1508-1517.
[3] WANG Jie, ZHAO Chunhui. Mode-cloud data analytics based transfer learning for soft sensor of manufacturing industry with incremental learning ability[J]. Control engineering practice, 2020, 98: 104392.
[4] 祁成, 史旭东, 熊伟丽. 基于二阶相似度的即时学习软测量建模方法[J]. 智能系统学报, 2020, 15(5): 910-918
QI Cheng, SHI Xudong, XIONG Weili. A just-in-time learning soft sensor modeling method based on the second-order similarity[J]. CAAI transactions on intelligent systems, 2020, 15(5): 910-918
[5] ZHOU Ping. Autoencoder and PCA based RVFLNs modeling for multivariate molten iron quality in blast furnace ironmaking[J]. Zidonghua Xuebao/acta automatica sinica, 2018, 44(10): 1799-1811.
[6] WANG Zi xiu, HE Q P, WANG Jin. Comparison of variable selection methods for PLS-based soft sensor modeling[J]. Journal of process control, 2015, 26: 56-72.
[7] SHENG Xiaochen, MA Junxia, XIONG Weili. Smart soft sensor design with hierarchical sampling strategy of ensemble Gaussian process regression for fermentation processes[J]. Sensors, 2020, 20(7): 1957.
[8] 赵超, 李俊, 戴坤成, 等. 基于自适应加权最小二乘支持向量机的青霉素发酵过程软测量建模[J]. 南京理工大学学报, 2017, 41(1): 100-107
ZHAO Chao, LI Jun, DAI Kuncheng, et al. Soft sensor modeling for penicillin fermentation process based on adaptive weighted least squares support vector machine[J]. Journal of Nanjing University of Science and Technology, 2017, 41(1): 100-107
[9] SUN Kai, HUANG S H, WONG D S H, et al. Design and application of a variable selection method for multilayer perceptron neural network with LASSO[J]. IEEE transactions on neural networks and learning systems, 2017, 28(6): 1386-1396.
[10] SUN Qingqiang, GE Zhiqiang. A survey on deep learning for data-driven soft sensors[J]. IEEE transactions on industrial informatics, 2021, 17(9): 5853-5866.
[11] SHANG Chao, YANG Fan, HUANG Dexian, et al. Data-driven soft sensor development based on deep learning technique[J]. Journal of process control, 2014, 24(3): 223-233.
[12] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[13] YUAN Xiaofeng, LI Lin, WANG Yalin. Nonlinear dynamic soft sensor modeling with supervised long short-term memory network[J]. IEEE transactions on industrial informatics, 2020, 16(5): 3168-3176.
[14] ZHENG Jiaqi, MA Lianwei, WU Yi, et al. Nonlinear dynamic soft sensor development with a supervised hybrid CNN-LSTM network for industrial processes[J]. ACS omega, 2022, 7(19): 16653-16664.
[15] 常树超, 赵春晖. 一种时空协同的图卷积长短期记忆网络及其工业软测量应用[J]. 控制与决策, 2022, 37(1): 77-86
CHANG Shuchao, ZHAO Chunhui. A spatio-temporal synergistic graph convolution long short-term memory network and its application for industrial soft sensors[J]. Control and decision, 2022, 37(1): 77-86
[16] 孙凯, 隋璘, 张芳芳, 等. 基于非负绞杀与长短期记忆神经网络的动态软测量算法[J]. 控制理论与应用, 2023, 40(1): 83-93
SUN Kai, SUI Lin, ZHANG Fangfang, et al. Dynamic soft sensor algorithm based on nonnegative garrote and long short-term memory neural network[J]. Control theory & applications, 2023, 40(1): 83-93
[17] LUI C F, LIU Yiqi, XIE Min. A supervised bidirectional long short-term memory network for data-driven dynamic soft sensor modeling[J]. IEEE transactions on instrumentation and measurement, 2022, 71: 1-13.
[18] XIE Ruimin, HAO Kuangrong, HUANG Biao, et al. Data-driven modeling based on two-stream λ gated recurrent unit network with soft sensor application[J]. IEEE transactions on industrial electronics, 2020, 67(8): 7034-7043.
[19] SHEN YIKANG, TAN S, SORDONI A, et al. Ordered neurons: integrating tree structures into recurrent neural networks[EB/OL]. (2019?05?08)[2022?01?01]. https://arxiv.org/abs/1810.09536.
[20] SHI Fei, CAO Hongrui, WANG Yuke, et al. Chatter detection in high-speed milling processes based on ON-LSTM and PBT[J]. The international journal of advanced manufacturing technology, 2020, 111(11): 3361-3378.
[21] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL]. (2016?05?19)[2022?01?01]. https://arxiv.org/abs/1409.0473.
[22] YUAN Xiaofeng, LI Lin, SHARDT Y A W, et al. Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development[J]. IEEE transactions on industrial electronics, 2021, 68(5): 4404-4414.
[23] LI Lin, WANG Yalin, YUAN Xiaofeng, et al. Quality prediction model for process sequential data of irregular measurements with sampling-interval-attention LSTM[C]//2020 Chinese Automation Congress. Shanghai: IEEE, 2021: 7186?7191.
[24] ZHU Xiuli, HAO Kuangrong, XIE Ruimin, et al. Soft sensor based on eXtreme gradient boosting and bidirectional converted gates long short-term memory self-attention network[J]. Neurocomputing, 2021, 434: 126-136.
[25] GOPAKUMAR V, TIWARI S, RAHMAN I. A deep learning based data driven soft sensor for bioprocesses[J]. Biochemical engineering journal, 2018, 136: 28-39.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems