[1]HE Yuhao,YI Mingfa,ZHOU Xiancun,et al.UAV image small-target detection based on improved Yolov5[J].CAAI Transactions on Intelligent Systems,2024,19(3):635-645.[doi:10.11992/tis.202210032]
Copy

UAV image small-target detection based on improved Yolov5

References:
[1] 曹家乐, 李亚利, 孙汉卿, 等. 基于深度学习的视觉目标检测技术综述[J]. 中国图象图形学报, 2022, 27(6): 1697–1722
CAO Jiale, LI Yali, SUN Hanqing, et al. A survey on deep learning based visual object detection[J]. Journal of image and graphics, 2022, 27(6): 1697–1722
[2] LIU Chuanyang, WU Yiquan, LIU Jingjing, et al. MTI-YOLO: a light-weight and real-time deep neural network for insulator detection in complex aerial images[J]. Energies, 2021, 14(5): 1426.
[3] SAHIN O, OZER S. YOLODrone: improved YOLO architecture for object detection in drone images[C]//2021 44th International Conference on Telecommunications and Signal Processing. Brno: IEEE, 2021: 361–365.
[4] WANG Xuewen, ZHAO Qingzhan, JIANG Ping, et al. LDS-YOLO: A lightweight small object detection method for dead trees from shelter forest[J]. Computers and electronics in agriculture, 2022, 198: 107035.
[5] 彭继慎, 孙礼鑫, 王凯, 等. 基于模型压缩的ED-YOLO电力巡检无人机避障目标检测算法[J]. 仪器仪表学报, 2021, 42(10): 161–170
PENG Jishen, SUN Lixin, WANG Kai, et al. ED-YOLO power inspection UAV obstacle avoidance target detectionalgorithm based on model compression[J]. Chinese journal of scientific instrument, 2021, 42(10): 161–170
[6] 陈蕊, 郑华飞, 蒋鸿宇, 等. 结合仿真迁移学习和自适应融合的无人机小目标检测[J/OL]. 小型微型计算机系统, 2022: 1–10. (2022–05–10). https://kns.cnki.net/kcms/detail/21.1106.TP.20220509.1930.032.html.
CHEN Rui, ZHENG Huafei, JIANG Hongyu, et al. Combination of simulation-based transfer learning and adaptive fusion for UAV small object detection[J/OL]. Journal of Chinese computer systems, 2022: 1–10. (2022–05–10). https://kns.cnki.net/kcms/detail/21.1106.TP.20220509.1930.032.html.
[7] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//European Conference on Computer Vision. Cham: Springer, 2018: 3–19.
[8] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS-improving object detection with one line of code[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 5562–5570.
[9] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132–7141.
[10] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759–8768.
[11] KRISHNA K, NARASIMHA MURTY M. Genetic K-means algorithm[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 1999, 29(3): 433–439.
[12] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.
[13] DUAN Kaiwen, BAI Song, XIE Lingxi, et al. CenterNet: keypoint triplets for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6568–6577.
[14] WANG Haotong, LIU Bailin, LIU Zhiping, et al. LSS target threat estimation and capture prediction trajectory simulation[C]//2020 7th International Conference on Information Science and Control Engineering. Changsha: IEEE, 2020: 806–813.
[15] CAI Zhaowei, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6154–6162.
[16] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9626–9635.
[17] LI Yanghao, CHEN Yuntao, WANG Naiyan, et al. Scale-aware trident networks for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6053–6062.
[18] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[19] ZHU Chenchen, HE Yihui, SAVVIDES M. Feature selective anchor-free module for single-shot object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 840–849.
[20] ZHANG Shifeng, CHI Cheng, YAO Yongqiang, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9756–9765.
[21] FENG Chengjian, ZHONG Yujie, GAO Yu, et al. TOOD: task-aligned one-stage object detection[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 3490–3499.
[22] AHMED A, TANGRI P, PANDA A, et al. VFNet: a convolutional architecture for accent classification[C]//2019 IEEE 16th India Council International Conference. Rajkot: IEEE, 2019: 1–4.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems