[1]WU Nannan,GUO Zehao,ZHAO Yiming,et al.Name disambiguation method based on hyperbolic space feature fusion[J].CAAI Transactions on Intelligent Systems,2024,19(1):79-88.[doi:10.11992/tis.202209029]
Copy

Name disambiguation method based on hyperbolic space feature fusion

References:
[1] 付媛, 朱礼军, 韩红旗. 姓名消歧方法研究进展[J]. 情报工程, 2016, 2(1): 53–58
FU Yuan, ZHU Lijun, HAN Hongqi. A survey of name disambiguation[J]. Technology intelligence engineering, 2016, 2(1): 53–58
[2] MANN G S, YAROWSKY D. Unsupervised personal name disambiguation[C]//Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003 - Volume 4. New York: ACM, 2003: 33?40.
[3] BAGGA A, BALDWIN B. Entity-based cross-document coreferencing using the vector space model[C]//Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics - Volume 1. New York: ACM, 1998: 79?85.
[4] 朱亮亮. 利用改进的K-means算法实现文献著者人名消歧[J]. 软件导刊, 2013, 12(5): 63–66
ZHU Liangliang. Research on name disambiguation based an improved K-means algorithm[J]. Software guide, 2013, 12(5): 63–66
[5] 肖桐, 朱靖波. 基于多阶段的中文人名消歧聚类技术的研究[C]//第六届全国信息检索学术会议论文集. 牡丹江, 2010: 323?331.
XIAO Tong, ZHU Jingbo. A multi-stage clustering approach to Chinese person name disambiguation[C]//The 6th China Conference on Information Retrieval, Mudanjiang: Chinese Information Processing Society of China, 2010: 316?324.
[6] 马莹莹, 吴幼龙, 唐华. 基于特征编码和图嵌入的姓名消歧方法[J]. 中国科学院大学学报, 2022, 39(3): 360–368
MA Yingying, WU Youlong, TANG Hua. Name disambiguation based on encoding attributes and graph topology[J]. Journal of University of Chinese Academy of Sciences, 2022, 39(3): 360–368
[7] BUNESCU R, PASCA M. Using encyclopedic knowledge for named entity disambiguation [C]//Conference of the European Chapter of the Association for Computational Linguistics. Trento: DBLP , 2006: 9?16.
[8] HAN Xianpei, ZHAO Jun. Named entity disambiguation by leveraging wikipedia semantic knowledge[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York: ACM, 2009: 215?224.
[9] HAN Xianpei, ZHAO Jun. Web personal name disambiguation based on reference entity tables mined from the web[C]//Proceedings of the Eleventh International Workshop on Web Information and Data Management. New York: ACM, 2009: 75?82.
[10] MAN Tong, SHEN Huawei, LIU Shenghua, et al. Predict anchor links across social networks via an embedding approach[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York: ACM, 2016: 1823?1829.
[11] LIU Li, CHEUNG W K, LI X, et al. Aligning users across social networks using network embedding[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York: AAAI Press, 2016: 1774–1780.
[12] ZHOU Fan, LIU Lei, ZHANG Kunpeng, et al. DeepLink: a deep learning approach for user identity linkage[C]//IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. Piscataway: IEEE, 2018: 1313?1321.
[13] LIANG Zhehan, RONG Yu, LI Chenxin, et al. Unsupervised large-scale social network alignment via cross network embedding[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 1008?1017.
[14] DERR T, KARIMI H, LIU Xiaorui, et al. Deep adversarial network alignment[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 352?361.
[15] ZHANG Si, TONG Hanghang, JIN Long, et al. Balancing consistency and disparity in network alignment[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 2212?2222.
[16] 余传明, 钟韵辞, 林奥琛, 等. 基于网络表示学习的作者重名消歧研究[J]. 数据分析与知识发现, 2020, 4(S1): 48–59
YU Chuanming, ZHONG Yunci, LIN Aochen, et al. Author name disambiguation with network embedding[J]. Data analysis and knowledge discovery, 2020, 4(S1): 48–59
[17] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2016?09?09)[2022?09?15]. https://arxiv.org/abs/1609.02907.pdf.
[18] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[EB/OL]. (2017?06?07)[2022?09?15]. https://arxiv.org/abs/1706.02216.pdf.
[19] LEE J M. Smooth manifolds[M]. Introduction to Smooth Manifolds. New York: Springer New York, 2013: 1?31.
[20] GULCEHRE C, DENIL M, MALINOWSKI M, et al. Hyperbolic attention networks[EB/OL]. (2018?05?24)[2022?09?15]. https://arxiv.org/abs/1805.09786.pdf.
[21] PENG Wei, VARANKA T, MOSTAFA A, et al. Hyperbolic deep neural networks: a survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 44(12): 10023–10044.
[22] CHAMI I, YING R, Ré C, et al. Hyperbolic graph convolutional neural networks[J]. Advances in neural information processing systems, 2019, 32: 4869–4880.
[23] LIU Qi, NICKEL M, KIELA D. Hyperbolic graph neural networks[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc. , 2019: 8230?8241.
[24] CHEN Hongxu, YIN Hongzhi, SUN Xiangguo, et al. Multi-level graph convolutional networks for cross-platform anchor link prediction[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 1503?1511.
[25] ZHENG Conghui, PAN Li, WU Peng. CAMU: cycle-consistent adversarial mapping model for user alignment across social networks[J]. IEEE transactions on cybernetics, 2022, 52(10): 10709–10720.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems