[1]XU Hao,QIAN Yuhua,WANG Keqi,et al.Low-light face detection method based on the cross fusion of high-and low-frequency channel features[J].CAAI Transactions on Intelligent Systems,2024,19(2):472-481.[doi:10.11992/tis.202208034]
Copy

Low-light face detection method based on the cross fusion of high-and low-frequency channel features

References:
[1] YUAN Ye , YANG Wenhan , REN Wenqi , et al. UG2+Track 2: A collective benchmark effort for evaluating and advancing image understanding in poor visibility environments[EB/OL]. (2019-04-09)[2022-01-01]. https://doi.org/10.48550/arXiv.1904.04474.
[2] XU Yuanyuan, YAN Wan, YANG Genke, et al. CenterFace: joint face detection and alignment using face as point[J]. Scientific programming, 2020, 2020: 1–8.
[3] YANG Shuo, LUO Ping, LOY C C, et al. WIDER FACE: a face detection benchmark[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 5525-5533.
[4] GUO Chunle, LI Chongyi, GUO Jichang, et al. Zero-reference deep curve estimation for low-light image enhancement[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1777-1786.
[5] PIZER S M, AMBURN E P, AUSTIN J D, et al. Adaptive histogram equalization and its variations[J]. Computer vision, graphics, and image processing, 1987, 39(3): 355–368.
[6] FARID H. Blind inverse Gamma correction[J]. IEEE transactions on image processing, 2001, 10(10): 1428–1433.
[7] LAND E H, MCCANN J J. Lightness and retinex theory[J]. Journal of the optical society of America, 1971, 61(1): 1–11.
[8] GUO Xiaojie. LIME: a method for low-light image enhancement[C]//Proceedings of the 24th ACM International Conference on Multimedia. New York: ACM, 2016: 87-91.
[9] RAHMAN Z U, JOBSON D J, WOODELL G A. Retinex processing for automatic image enhancement[J]. Journal of electronic imaging, 2004, 13(1): 100–110.
[10] FU Xueyang, ZENG Delu, HUANG Yue, et al. A fusion-based enhancing method for weakly illuminated images[J]. Signal processing, 2016, 129: 82–96.
[11] FU Xueyang, ZENG Delu, HUANG Yue, et al. A weighted variational model for simultaneous reflectance and illumination estimation[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2782-2790.
[12] WANG Shuhang, ZHENG Jin, HU Haimiao, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE transactions on image processing:a publication of the IEEE signal processing society, 2013, 22(9): 3538–3548.
[13] LI Mading, LIU Jiaying, YANG Wenhan, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE transactions on image processing, 2018, 27(6): 2828–2841.
[14] WEI Chen, WANG Wenjing, YANG Wenhan, et al. Deep retinex decomposition for low-light enhancement[EB/OL]. (2018-08-14)[2022-01-01]. https://arxiv.org/abs/1808.04560.pdf
[15] ZHANG Yonghua, ZHANG Jiawan, GUO Xiaojie. Kindling the darkness: a practical low-light image enhancer[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1632-1640.
[16] ZHANG Yonghua, GUO Xiaojie, MA Jiayi, et al. Beyond brightening low-light images[J]. International journal of computer vision, 2021, 129(4): 1013–1037.
[17] 王克琪, 钱宇华, 梁吉业, 等. 局部-全局关系耦合的低照度图像增强[J]. 中国科学:信息科学, 2022, 52(3): 443–460
WANG Keqi, QIAN Yuhua, LIANG Jiye, et al. Local-global coupling relationship based low-light image enhancement[J]. Scientia sinica (informationis), 2022, 52(3): 443–460
[18] GONG Yuqi, YU Xuehui, DING Yao, et al. Effective fusion factor in FPN for tiny object detection[C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 1159-1167.
[19] MEI Y, FAN Y, ZHANG Y, et al. Pyramid attention network for image restoration[J]. International journal of computer vision, 2023, 131(12): 3207–3225.
[20] LIM J S, ASTRID M, YOON H J, et al. Small object detection using context and attention[C]//2021 International Conference on Artificial Intelligence in Information and Communication. Jeju Island: IEEE, 2021: 181-186.
[21] XU A, YAO A, LI A, et al. Auto-FPN: automatic network architecture adaptation for object detection beyond classification[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 6648-6657.
[22] LUO Yihao, CAO Xiang, ZHANG Juntao, et al. CE-FPN: enhancing channel information for object detection[J]. Multimedia tools and applications, 2022, 81(21): 30685–30704.
[23] ZHANG Tianwen, ZHANG Xiaoling, KE Xiao. Quad-FPN: a novel quad feature pyramid network for SAR ship detection[J]. Remote sensing, 2021, 13(14): 2771.
[24] JIANG Yiqi, TAN Zhiyu, WANG Junyan, et al. GiraffeDet: a heavy-neck paradigm for object detection[EB/OL]. (2022-02-09)[2022-04-04]. https://doi.org/10.48550/arXiv.2202.04256.
[25] CAO Junxu, CHEN Qi, GUO Jun, et al. Attention-guided context feature pyramid network for object detection[EB/OL]. (2020-05-23)[2022-04-04]. https://arxiv.org/abs/2005.11475.
[26] SASAGAWA Y, NAGAHARA H. YOLO in the dark - domain adaptation method for merging multiple models[C]//Proceedings of the European Conference on Computer Vision. [S.l.]: Springer, 2020: 345-359.
[27] WANG Wenjing, YANG Wenhan, LIU Jiaying. HLA-face: joint high-low adaptation for low light face detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 16190-16199.
[28] LIANG Jinxiu, WANG Jingwen, QUAN Yuhui, et al. Recurrent exposure generation for low-light face detection[J]. IEEE transactions on multimedia, 2022, 24: 1609–1621.
[29] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261-2269.
[30] LINDEBERG T. Scale-space theory in computer vision[M]. [S. l. ]: Springer Science & Business Media, 2013.
[31] CHEN Yunpeng, FAN Haoqi, XU Bing, et al. Drop an octave: reducing spatial redundancy in convolutional neural networks with octave convolution[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 3434-3443.
[32] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
[33] DA K. A method for stochastic optimization[EB/OL]. (2014-12-22)[2022-01-01]. https://doi.org/10.48550/arXiv.1412.6980.
[34] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2016: 1440-1448.
[35] NAJIBI M, SAMANGOUEI P, CHELLAPPA R, et al. SSH: single stage headless face detector[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4885-4894.
[36] DENG Jiankang, GUO Jia, VERVERAS E, et al. RetinaFace: single-shot multi-level face localisation in the wild[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 5202-5211.
[37] TANG Xu, DU D K, HE Zeqiang, et al. PyramidBox: A context-assisted single shot face detector[C]//European Conference on Computer Vision. Cham: Springer, 2018: 812-828.
[38] LI Jian, WANG Yabiao, WANG Changan, et al. DSFD: dual shot face detector[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 5055-5064.
[39] LIN T Y, DOLL?R P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
[40] CHEN Qiang, WANG Yingming, YANG Tong, et al. You only look one-level feature[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13034-13043.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems