[1]FAN Yibo,ZHAO Tao,XIE Xiangpeng.Self-organizing rule generation method for a general type-2 fuzzy system[J].CAAI Transactions on Intelligent Systems,2024,19(3):646-652.[doi:10.11992/tis.202206024]
Copy

Self-organizing rule generation method for a general type-2 fuzzy system

References:
[1] MENDEL J M. Type-2 fuzzy sets and systems: an overview[J]. IEEE computational intelligence magazine, 2007, 2(1): 20–29.
[2] 钱殿伟. 基于模糊滑模的多机器人系统编队控制[J]. 智能系统学报, 2016, 11(5): 641–647
QIAN Dianwei. Formation control of multi-robot systems in a fuzzy sliding mode[J]. CAAI transactions on intelligent systems, 2016, 11(5): 641–647
[3] MA Zhiqiang, HUANG Panfeng, KUANG Zhian. Fuzzy approximate learning-based sliding mode control for deploying tethered space robot[J]. IEEE transactions on fuzzy systems, 2021, 29(9): 2739–2749.
[4] 秦贝贝, 陈增强, 孙明玮, 等. 基于自适应神经模糊推理系统的船舶航向自抗扰控制[J]. 智能系统学报, 2020, 15(2): 255–263
QIN Beibei, CHEN Zengqiang, SUN Mingwei, et al. Active disturbance rejection control of ship course based on adaptive-network-based fuzzy inference system[J]. CAAI transactions on intelligent systems, 2020, 15(2): 255–263
[5] KASABOV N K, SONG Qun. DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction[J]. IEEE transactions on fuzzy systems, 2002, 10(2): 144–154.
[6] SILVA A M, CAMINHAS W, LEMOS A, et al. A fast learning algorithm for evolving neo-fuzzy neuron[J]. Applied soft computing, 2014, 14: 194–209.
[7] SU W C, JUANG C F, HSU C M. Multiobjective evolutionary interpretable type-2 fuzzy systems with structure and parameter learning for hexapod robot control[J]. IEEE transactions on systems, man, and cybernetics:systems, 2022, 52(5): 3066–3078.
[8] LIANG Qilian, MENDEL J M. Interval type-2 fuzzy logic systems: theory and design[J]. IEEE transactions on fuzzy systems, 2000, 8(5): 535–550.
[9] MENDEL J M, JOHN R I, LIU Feilong. Interval type-2 fuzzy logic systems made simple[J]. IEEE transactions on fuzzy systems, 2006, 14(6): 808–821.
[10] MENDEL J M, LIU Xinwang. Simplified interval type-2 fuzzy logic systems[J]. IEEE transactions on fuzzy systems, 2013, 21(6): 1056–1069.
[11] ZHAO Tao, LIU Jiahao, DIAN Songyi. Finite-time control for interval type-2 fuzzy time-delay systems with norm-bounded uncertainties and limited communication capacity[J]. Information sciences:an international journal, 2019, 483(C): 153–173.
[12] ZHAO Tao, DIAN Songyi. State feedback control for interval type-2 fuzzy systems with time-varying delay and unreliable communication links[J]. IEEE transactions on fuzzy systems, 2018, 26(2): 951–966.
[13] LIN Yangyin, LIAO S H, CHANG J Y, et al. Simplified interval type-2 fuzzy neural networks[J]. IEEE transactions on neural networks and learning systems, 2014, 25(5): 959–969.
[14] HWANG C, RHEE F C H. Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means[J]. IEEE transactions on fuzzy systems, 2007, 15(1): 107–120.
[15] PUJIANTARA M, ABDILLAH M. Intelligent over current relays based on interval type 2 fuzzy logic approach[C]//2012 International Conference on Green and Ubiquitous Technology. Bandung: IEEE, 2012: 58-61.
[16] BIGLARBEGIAN M, MELEK W W, MENDEL J M. Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments[J]. IEEE transactions on industrial electronics, 2011, 58(4): 1371–1384.
[17] CHEN C S. Supervisory adaptive tracking control of robot manipulators using interval type-2 TSK fuzzy logic system[J]. IET control theory & applications, 2011, 5(15): 1796–1807.
[18] LIU Feilong. An efficient centroid type-reduction strategy for general type-2 fuzzy logic system[J]. Information sciences:an international journal, 2008, 178(9): 2224–2236.
[19] MENDEL J M, Uncertain rule-based fuzzy logic system: introduction and new directions[M]. New York: Springer, 2001.
[20] KARNIK N N, MENDEL J M. Type-2 fuzzy logic systems: type-reduction[C]//SMC’98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics. San Diego: IEEE, 2002: 2046-2051.
[21] CASTILLO O, MELIN P. Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review[J]. Information sciences:an international journal, 2012, 205: 1–19.
[22] JUANG C F, TSAO Y W. A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning[J]. IEEE transactions on fuzzy systems, 2008, 16(6): 1411–1424.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems