[1]LU Wanjie,CHEN Zilin,FU Hua,et al.Improved slime mould algorithm with multistrategy integration and its application[J].CAAI Transactions on Intelligent Systems,2023,18(5):1060-1069.[doi:10.11992/tis.202206015]
Copy

Improved slime mould algorithm with multistrategy integration and its application

References:
[1] HOU Jue, LIU Zhou, WANG Shaorong, et al. Intelligent coordinated damping control in active distribution network based on PSO[J]. Energy reports, 2022, 8: 1302-1312.
[2] XUE Jiankai, SHEN Bo. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems science & control engineering, 2020, 8(1): 22-34.
[3] FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al. Marine predators algorithm: a nature-inspired metaheuristic[J]. Expert systems with applications, 2020, 152: 113377.
[4] ABUALIGAH L, DIABAT A, MIRJALILI S, et al. The arithmetic optimization algorithm[J]. Computer methods in applied mechanics and engineering, 2021, 376: 113609.
[5] 赵文超, 郭鹏, 王海波, 等. 改进樽海鞘群算法求解柔性作业车间调度问题[J]. 智能系统学报, 2022, 17(2): 376-386
ZHAO Wenchao, GUO Peng, WANG Haibo, et al. Improved slap swarm algorithm for scheduling of flexible job shop[J]. CAAI transactions on intelligent systems, 2022, 17(2): 376-386
[6] 蒲兴成, 宋欣琳. 分组教学蚁群算法改进及其在机器人路径规划中应用[J]. 智能系统学报, 2022, 17(4): 764-771
PU Xingcheng, SONG Xinlin. Improvement of ant colony algorithm in group teaching and its application in robot path planning[J]. CAAI transactions on intelligent systems, 2022, 17(4): 764-771
[7] 刘云鹏, 李泳霖, 裴少通, 等. 基于紫外光辐射照度特征的污秽瓷绝缘子绝缘状态评估方法[J]. 高电压技术, 2023, 49(4): 1622-1631
LIU Yunpeng, LI Yonglin, PEI Shaotong, et al. Evaluation of the insulation state of contaminated porcelain insulators based on characteristics of ultraviolet irradiance[J]. High voltage engineering, 2023, 49(4): 1622-1631
[8] WANG Rui, SUN Wanting. Fault diagnosis of electrical automatic control system of hydraulic support based on particle swarm optimization algorithm[J]. Journal of ambient intelligence and humanized computing, 2022, 228: 1-7.
[9] LIU Yun, HEIDARI A A, YE Xiaojia, et al. Boosting slime mould algorithm for parameter identification of photovoltaic models[J]. Energy, 2021, 234: 121164.
[10] LI Shimin, CHEN Huiling, WANG Mingjing, et al. Slime mould algorithm: a new method for stochastic optimization[J]. Future generation computer systems, 2020, 111: 300-323.
[11] YU C, HEIDARI A A, XUE X, et al. Boosting quantum rotation gate embedded slime Mould algorithm[J]. Expert systems with applications, 2021, 181: 115082.
[12] ALFADHLI J, JARAGH A, ALFAILAKAWI M G, et al. FP-SMA: an adaptive, fluctuant population strategy for slime mould algorithm[J]. Neural computing and applications, 2022, 34(13): 11163-11175.
[13] NAIK M K, PANDA R, ABRAHAM A. Adaptive opposition slime mould algorithm[J]. Soft computing, 2021, 25(22): 14297-14313.
[14] 肖亚宁, 孙雪, 李三平, 等. 基于混沌精英黏菌算法的无刷直流电机转速控制[J]. 科学技术与工程, 2021, 21(28): 12130-12138
XIAO Yaning, SUN Xue, LI Sanping, et al. Speed control of brushless direct current motor based on chaotic elite slime mould algorithm[J]. Science technology and engineering, 2021, 21(28): 12130-12138
[15] 贾鹤鸣, 刘宇翔, 刘庆鑫, 等. 融合随机反向学习的黏菌与算术混合优化算法[J]. 计算机科学与探索, 2022, 16(5): 1182-1192
JIA heming, LIU yuxiang, LIU Qingxin, et al. Hybrid algorithm of slime mould algorithm and arithmetic optimization algorithm based on random opposition-based learning[J]. Journal of frontiers of computer science and technology, 2022, 16(5): 1182-1192
[16] 刘成汉, 何庆. 改进交叉算子的自适应人工蜂群黏菌算法[J]. 小型微型计算机系统, 2023, 44(2): 263-268
LIU Chenghan, HE Qing. Adaptive artificial bee colony slime mold algorithm with improved crossover operator[J]. Journal of Chinese computer systems, 2023, 44(2): 263-268
[17] YU Yang, GAO Shangce, CHENG Shi, et al. CBSO: a memetic brain storm optimization with chaotic local search[J]. Memetic computing, 2018, 10(4): 353-367.
[18] TANG Andi, TANG Shangqin, HAN Tong, et al. A modified slime mould algorithm for global optimization[J]. Computational intelligence and neuroscience, 2021, 2021: 1-22.
[19] 范千, 陈振健, 夏樟华. 一种基于折射反向学习机制与自适应控制因子的改进樽海鞘群算法[J]. 哈尔滨工业大学学报, 2020, 52(10): 183-191
FAN Qian, CHEN Zhenjian, XIA Zhanghua. A modified salp swarm algorithm based on refracted opposition-based learning mechanism and adaptive control factor[J]. Journal of Harbin Institute of technology, 2020, 52(10): 183-191
[20] 何庆, 罗仕杭. 混合改进策略的黑猩猩优化算法及其机械应用[J]. 控制与决策, 2023, 38(2): 354-364
HE Qing, LUO Shihang. Chimp optimization algorithm based on hybrid improvement strategy and its mechanical application[J]. Control and decision, 2023, 38(2): 354-364
[21] CHEN Tianqi, GUESTRIN C. XGBoost: a scalable tree boosting system[EB/OL]. (2016?06?10)[2022?01?01].https://arxiv.org/abs/1603.02754.
[22] 张又文, 冯斌, 陈页, 等. 基于遗传算法优化XGBoost的油浸式变压器故障诊断方法[J]. 电力自动化设备, 2021, 41(2): 200-206
ZHANG Youwen, FENG Bin, CHEN Ye, et al. Fault diagnosis method for oil-immersed transformer based on XGBoost optimized by genetic algorithm[J]. Electric power automation equipment, 2021, 41(2): 200-206
[23] 朱圳, 刘立芳, 齐小刚. 基于数据挖掘的通信网络故障分类研究[J]. 智能系统学报, 2022, 17(6): 1228-1234
ZHU Zhen, LIU Lifang, QI Xiaogang. Research on communication network fault classification based on data mining[J]. CAAI transactions on intelligent systems, 2022, 17(6): 1228-1234
[24] 杨帅, 郭茂祖, 赵玲玲, 等. 融合遗传算法与XGBoost的玉米百粒重相关基因挖掘[J]. 智能系统学报, 2022, 17(1): 170-180
YANG Shuai, GUO Maozu, ZHAO Lingling, et al. The method of 100-kernel weight related genes mining in maize mixed with genetic algorithm and XGboost[J]. CAAI transactions on intelligent systems, 2022, 17(1): 170-180
[25] 王雨虹, 王志中, 付华, 等. 多策略改进麻雀算法与BiLSTM的变压器故障诊断研究[J]. 仪器仪表学报, 2022, 43(3): 87?97.
WANG Yuhong, WANG Zhizhong, FU Hua, et al, Research on transformer fault diagnosis based on the improved multi-strategy sparrow algorithm and BiLSTM[J]. Chinese Journal of scientific instrument, 2022, 43(3): 87?97.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems