[1]WU Jun,DONG Jiaming,LIU Xin,et al.Lightweight object detection network and its application based on the attention optimization[J].CAAI Transactions on Intelligent Systems,2023,18(3):506-516.[doi:10.11992/tis.202206014]
Copy

Lightweight object detection network and its application based on the attention optimization

References:
[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580?587.
[2] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904–1916.
[3] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2016: 1440?1448.
[4] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[5] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936?944.
[6] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980?2988.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779?788.
[8] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020?04?23)[2022?06?08].https://arxiv.org/abs/2004.10934.
[9] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517?6525.
[10] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018?04?08) [2022?06?08].https://arxiv.org/abs/1804.02767.
[11] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: scaling cross stage partial network[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13024?13033.
[12] 陈科圻, 朱志亮, 邓小明, 等. 多尺度目标检测的深度学习研究综述[J]. 软件学报, 2021, 32(4): 1201–1227
CHEN Keqi, ZHU Zhiliang, DENG Xiaoming, et al. Deep learning for multi-scale object detection: a survey[J]. Journal of software, 2021, 32(4): 1201–1227
[13] 毛莺池, 唐江红, 王静, 等. 基于Faster R-CNN的多任务增强裂缝图像检测方法[J]. 智能系统学报, 2021, 16(2): 286–293
MAO Yingchi, TANG Jianghong, WANG Jing, et al. Multi-task enhanced dam crack image detection based on Faster R-CNN[J]. CAAI transactions on intelligent systems, 2021, 16(2): 286–293
[14] 邵江南, 葛洪伟. 一种基于深度学习目标检测的长时目标跟踪算法[J]. 智能系统学报, 2021, 16(3): 433–441
SHAO Jiangnan, GE Hongwei. A long-term object tracking algorithm based on deep learning and object detection[J]. CAAI transactions on intelligent systems, 2021, 16(3): 433–441
[15] 赵文清, 杨盼盼. 双向特征融合与注意力机制结合的目标检测[J]. 智能系统学报, 2021, 16(6): 1098–1105
ZHAO Wenqing, YANG Panpan. Target detection based on bidirectional feature fusion and an attention mechanism[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1098–1105
[16] 田永林, 王雨桐, 王建功, 等. 视觉Transformer研究的关键问题: 现状及展望[J]. 自动化学报, 2022, 48(4): 957–979
TIAN Yonglin, WANG Yutong, WANG Jiangong, et al. Key problems and progress of vision transformers: the state of the art and prospects[J]. Acta automatica sinica, 2022, 48(4): 957–979
[17] 郭璠, 张泳祥, 唐琎, 等. YOLOv3-A: 基于注意力机制的交通标志检测网络[J]. 通信学报, 2021, 42(1): 87–99
GUO Fan, ZHANG Yongxiang, TANG Jin, et al. YOLOv3-A: a traffic sign detection network based on attention mechanism[J]. Journal on communications, 2021, 42(1): 87–99
[18] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[EB/OL]. (2015?02?05) [2022?06?08].https://arxiv.org/abs/1506.02025.
[19] HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(8): 2011–2023.
[20] ZHAO Bo, WU Xiao, FENG Jiashi, et al. Diversified visual attention networks for fine-grained object classification[J]. IEEE transactions on multimedia, 2017, 19(6): 1245–1256.
[21] VOLODYMYR M, NICOLAS H, ALEX G, et al. Recurrent models of visual attention[EB/OL]. (2014?06?24) [2022?06?08].https://arxiv.org/abs/1406.6247v1.
[22] WU Jun, ZHU Jiahui, TONG Xin, et al. Dynamic activation and enhanced image contour features for object detection[J]. Connection Science, 2022, 12: 1–21.
[23] WANG Fei, JIANG Mengqing, QIAN Chen, et al. Residual attention network for image classification[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6450?6458.
[24] HOU Qibin, ZHOU Daquan, FENG Jiashi. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708?13717.
[25] HAMI D R, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 658?666.
[26] ZHENG Zhaohui, WANG Ping, LIU Wei, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(7): 12993–13000.
[27] ZAPOTOCZNY P. Discrimination of wheat grain varieties using image analysis and neural networks. Part I. Single kernel texture[J]. Journal of cereal science, 2011, 54(1): 60–68.
[28] 万鹏, 孙瑜, 孙永海. 基于计算机视觉的大米粒形识别方法[J]. 吉林大学学报(工学版), 2008, 38(2): 489–492
WAN Peng, SUN Yu, SUN Yonghai. Recognition method of rice kernel shape based on computer vision[J]. Journal of Jilin university (engineering and technology edition), 2008, 38(2): 489–492
[29] WANG Qijin, ZHANG Shengyu, DONG Shifeng, et al. Pest24: a large-scale very small object data set of agricultural pests for multi-target detection[J]. Computers and electronics in agriculture, 2020, 175: 105585.
[30] 刘浏. 基于深度学习的农作物害虫检测方法研究与应用[D]. 合肥: 中国科学技术大学, 2020.
LIU Liu. Research and applications on agricultural crop pest detection techniques based on deep learning[D]. Hefei: University of Science and Technology of China, 2020.
[31] TIAN Yunong, YANG Guodong, WANG Zhe, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J]. Computers and electronics in agriculture, 2019, 157: 417–426.
[32] 武星, 齐泽宇, 王龙军, 等. 基于轻量化YOLOv3卷积神经网络的苹果检测方法[J]. 农业机械学报, 2020, 51(8): 17–25
WU Xing, QI Zeyu, WANG Longjun, et al. Apple detection method based on light-YOLOv3 convolutional neural network[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(8): 17–25
[33] DAVID E, MADEC S, SADEGHI-TEHRAN P, et al. Global wheat head detection (GWHD) dataset: a large and diverse dataset of high-resolution RGB-labelled images to develop and benchmark wheat head detection methods[J]. Plant phenomics, 2020: 3521852.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems