[1]LIU Jinping,KUANG Yabin,ZHAO Shuangshuang,et al.Transition process identification based on the long and short sliding windowed slow feature analysis and time series association rule mining[J].CAAI Transactions on Intelligent Systems,2023,18(3):589-603.[doi:10.11992/tis.202205048]
Copy

Transition process identification based on the long and short sliding windowed slow feature analysis and time series association rule mining

References:
[1] LIU Jinping, XU Longcheng, XIE Yongfang, et al. Toward robust fault identification of complex industrial processes using stacked sparse-denoising autoencoder with softmax classifier[J]. IEEE transactions on cybernetics, 2023, 53(1): 428–442.
[2] LIU Jinping, WANG Jie, LIU Xianfeng, et al. MWRSPCA: online fault monitoring based on moving window recursive sparse principal component analysis[J]. Journal of intelligent manufacturing, 2022, 33(5): 1255–1271.
[3] SUN Dongdong, GONG Xiaofeng, CHEN Yonglu. Integrating canonical variate analysis and kernel independent component analysis for Tennessee Eastman process monitoring[J]. Journal of chemical engineering of Japan, 2020, 53(3): 126–133.
[4] SU Hao, YANG Xin, XIANG Ling, et al. A novel method based on deep transfer unsupervised learning network for bearing fault diagnosis under variable working condition of unequal quantity[J]. Knowledge-based systems, 2022, 242: 108381.
[5] 何雨辰, 葛志强, 宋执环. 基于动态信息的过渡过程辨识方法[J]. 上海交通大学学报, 2017, 51(6): 686–692
HE Yuchen, GE Zhiqiang, SONG Zhihuan. A new method for transition identification by using dynamic information[J]. Journal of Shanghai Jiao Tong university, 2017, 51(6): 686–692
[6] 赵健程, 赵春晖. 面向全量测点耦合结构分析与估计的工业过程监测方法[J/OL]. 自动化学报. (2022?10?08)[2023?03?07]. http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c220090.
ZHAO Jiancheng, ZHAO Chunhui. An industrial process monitoring method based on total measurement point coupling structure analysis and estimation[J/OL]. Acta automatica sinica. (2022?10?08)[2023?03?07]. http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c220090.
[7] ZHAO Chunhui, GAO Furong. Between-phase-based statistical analysis and modeling for transition monitoring in multiphase batch processes[J]. AIChE journal, 2012, 58(9): 2682–2696.
[8] ZHANG Hanwen, SHANG Jun, YANG Chunjie, et al. Conditional random field for monitoring multimode processes with stochastic perturbations[J]. Journal of the franklin institute, 2020, 357(12): 8229–8251.
[9] DONG Jie, WANG Yaqi, PENG Kaixiang. A novel fault detection method based on the extraction of slow features for dynamic nonstationary processes[J]. IEEE transactions on instrumentation and measurement, 2022, 71: 1–11.
[10] ZHAO Chunhui, CHEN Junhao, JING Hua. Condition-driven data analytics and monitoring for wide-range nonstationary and transient continuous processes[J]. IEEE transactions on automation science and engineering, 2021, 18(4): 1563–1574.
[11] CAI Meiling, SHI Yaqin, LIU Jinping, et al. DRKPCA-VBGMM: fault monitoring via dynamically-recursive kernel principal component analysis with variational Bayesian Gaussian mixture model[J]. Journal of intelligent manufacturing, 2022: 1?29.
[12] 王雪平, 林甲祥, 巫建伟, 等. 基于可决系数的自适应关联规则挖掘算法[J]. 智能系统学报, 2020, 15(2): 352–359
WANG Xueping, LIN Jiaxiang, WU Jianwei, et al. Adaptive-association-rule mining algorithm based on determination coefficient[J]. CAAI transactions on intelligent systems, 2020, 15(2): 352–359
[13] WANG Ling, MENG Jianyao, XU Peipei, et al. Mining temporal association rules with frequent itemsets tree[J]. Applied soft computing, 2018, 62: 817–829.
[14] PANJAITAN S, SULINDAWATY, AMIN M, et al. Implementation of apriori algorithm for analysis of consumer purchase patterns[J]. Journal of physics:conference series, 2019, 1255(1): 012057.
[15] THURACHON W, KREESURADEJ W. Incremental association rule mining with a fast incremental updating frequent pattern growth algorithm[J]. IEEE access, 2021, 9: 55726–55741.
[16] WANG Huanbin, GAO Yangjun. Research on parallelization of Apriori algorithm in association rule mining[J]. Procedia computer science, 2021, 183: 641–647.
[17] LI Yuanyuan, YIN Shaohong. Mining algorithm for weighted FP-growth frequent item sets based on ordered FP-tree[J]. International journal of engineering and management research, 2019, 9(5): 154–158.
[18] WU J M T, LIN J C W, TAMRAKAR A. High-utility itemset mining with effective pruning strategies[J]. ACM transactions on knowledge discovery from data, 2019, 13(6): 1–22.
[19] 李海林, 龙芳菊. 基于同步频繁树的时间序列关联规则分析[J]. 智能系统学报, 2021, 16(3): 502–510
LI Hailin, LONG Fangju. Association rules analysis of time series based on synchronization frequent tree[J]. CAAI transactions on intelligent systems, 2021, 16(3): 502–510
[20] 闫浩, 王福利, 孙钰沣, 等. 基于贝叶斯网络参数迁移学习的电熔镁炉异常工况识别[J]. 自动化学报, 2021, 47(1): 197–208
YAN Hao, WANG Fuli, SUN Yufeng, et al. Abnormal condition identification based on Bayesian network parameter transfer learning for the electro-fused magnesia[J]. Acta automatica sinica, 2021, 47(1): 197–208
[21] 姜庆超, 颜学峰. 基于局部-整体相关特征的多单元化工过程分层监测[J]. 自动化学报, 2020, 46(9): 1770–1782
JIANG Qingchao, YAN Xuefeng. Hierarchical monitoring for multi-unit chemical processes based on local-global correlation features[J]. Acta automatica sinica, 2020, 46(9): 1770–1782
[22] KE Yun, YAO Chong, SONG Enzhe, et al. An early fault diagnosis method of common-rail injector based on improved CYCBD and hierarchical fluctuation dispersion entropy[J]. Digital signal processing, 2021, 114: 103049.
[23] KANO M, HASEBE S, HASHIMOTO I, et al. Statistical process monitoring based on dissimilarity of process data[J]. AIChE journal, 2002, 48(6): 1231–1240.
[24] HE Yuchen, ZHOU Le, GE Zhiqiang, et al. Distributed model projection based transition processes recognition and quality-related fault detection[J]. Chemometrics and intelligent laboratory systems, 2016, 159: 69–79.
[25] MA Xin, SI Yabin, YUAN Zeyi, et al. Multistep dynamic slow feature analysis for industrial process monitoring[J]. IEEE transactions on instrumentation and measurement, 2020, 69(12): 9535–9548.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems